Dyalog Programming
Reference Guide

Dyalog version 19.0

JYALOG

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2024 by Dyalog Limited
All rights reserved.

Dyalog Programming Reference Guide

Dyalog version 19.0
Document Revision: 20240902_190

Unless stated otherwise, all examples in this document assume that JI0 OML « 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle®, JavaScript™ and Java™ are registered trademarks of Oracle and/or its
affiliates.

UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows?® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.

macOS® and OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

Chapter 1: Introduction ... 1
WOTKSPACES 1
Legal Names ... 2
ATTAYS o 3
NUMDETS . 4
Characters 5
Enclosed EISMENts ... 5
Specification of Variables 6
Vector NOAtION ...t 6
Structuring Of ATTAYS ... 7
Display of AITays ... 8
Prototypes and Fill Ttems ... 13
Cells and Sub-arrays ... 14
EXPIESSIONS ... 16
FUNCHIONS ... 17
OPCTALOTS ... 19
Binding Strength ... 21
Function Trains ... 22
Search Functions and Hash Tables 27
Idiom Recognition 28
Idiom List ..o 29
Parallel EXECULION ... 34
Complex NUMDETS 35
128 Bit Decimal Floating-Point Support ... 38
Introductionl 38
System Variable: Floating-point Representation ... 38
Conversion between Decimal and Binary ... 40
Decimal Comparison Tolerance ... 40
Name Association and Floating-point Values ... 41
Decimal Floats and Microsoft. NET ... 41
NaAMESPACES ... 42
NaMESPACE SYNTAX ... 43
Namespace Reference Evaluation ... 45
Namespaces and Localisation ... 45
Namespace References ... 48
Unnamed NameSPaCes ..o 49
Arrays of Namespace References ... 51
Distributed ASSIGNMENt 53
Distributed FUNCHIONS 55
Namespaces and OPerators 57

Serialising NamesPaCesoooiii i 58
External Variables 60
Component Files ... 61
Auxiliary ProCessOrs 61
Chapter 2: Defined Functions & Operators ... 63
Traditional Functions and Operators ... 63

Model SYNtax ... 64

STAteMENS 65

Global & Local Names ... 66

Loocals LineS ... 68

NaAMELISTS .. .o 69

Locked Functions & Operators ... 70

Function Declaration Statements 70

ACCESS SAtCMENTo 71

Attribute Statement ... 72

Implements Statement ... 73

Signature Statement ... 73

Control StrUCtUIeS 75

IE Statement 77

While Statement 80

Repeat Statement ... 81

For Statement 82

Select Statement 85

With Statement ... 86

Hold Statement ... 87

Trap Statement 91

GOTO StatemMeNt ... 93

Return Statement ... 94

Leave Statement 94

Continue StatemeNnt 94

Section Statement 94

Disposable Statement ... 95

APL Line Editor ... 97
DN & DO .o 104

Multi-Line DInS ... 105

Default Left Argument 106

GUALAS ..o 108

Shy ResuUlt ... o 108

Lexical Name SCOPE ... 109

Error-Guards ... 110

DO 113

ReCUISION .. 114

Tail Calls ... 118

RESIIICLIONS e 119
Chapter 3: Object Oriented Programming ... 121

Introducing CIaSSESs 121
Defining ClasSesooooiiiii 122
Editing Classesccooiiiii e 122
INheritance 123
INStANCES ... 124

CONSLIUCTOTS ... oo 125
Constructor Overloading 126
Niladic (Default) COnStrucCtorscoooiiii e 129
Empty Arrays of Instances: Why ? 130
Empty Arrays of Instances: HOW? 131
Base CONSIUCIONScooii e 133
Niladic Example ... 135
Monadic EXample 136

DeStIUCTOTS 137

Class MEMDBETS 140

Faelds oo 141
Public Fields 141
Initialising Fields 142
Private Fields 143
Shared Fields 143
Trigger Fields ... 144

MethOds 145
Shared Methods 146
Instance Methods 147
Superseding Base Class Methods ... 148

PrOP T ICS ... 149
Simple Instance Properties ... 150
Simple Shared Properties 152
Numbered Propertieso 152
Bl 153
The Default Property 155
ComponentFile Class ... 156
Keyed Properties 158
EXample . 161

I O aCeS . 162
Penguin Class Example 163

Including Namespaces in ClasSes ... 164
Bl 165

NEStEd CLASSES ... 167
GolfService Example Class ... 167
GolfService Example ... 173

NaMESPACE SCTIPLS ... e 175
Namespace Script Example ... 178

Including Script Files in SCrIPLS ... 180

Class Declaration Statements ... 181
dInterface Statement 181
:Namespace Statement 181

(CIASS STAtEIMENT ... 182

JUSING StateMENt ... 183
Attribute Statement ... 184
SACCESS STAtCIMENT 185
Jdmplements Statement ... 187
:Field Statement ... 188
PrOPeItY SeCtON ... 190
PropertyArguments CLass 191
PropertyGet Function ... 192
PropertySet FUnction 193
PropertyShape Function 194
Chapter 4: Threadsand Triggers 195
T adS .. . 195
Multi-Threading language elements. i 196
Thread SWitChing 197
N SO . 198
Stack Considerations 198
Globals and the Order of Execution ... 199
Threads & Niladic Functions 202
Threads & External Functions 203
Synchronising Threads 204
Semaphore Example ... 205
Latch Example 205
Debugging Threads ... 206
T g TS . 208
Global TTigEeTS 211
Chapter 5: APL Files ... 213
INtrOdUCTIONo 213
Component Files 214
Programming TechniqUes 222
File DeSI@N .. .o 225
Internal StrUCLUIe 225
The Effect of Buffering 228
Integrity and SECUTItY i 229
Chapter 6: Error Trapping 231
Standard Error ACION 231
Error Trapping CONCEPLS ... e 232
Example Traps 235
Signalling BVents 242
Handling Unexpected Application Errors in Windows ... 243
Chapter 7: Error MeSSages ... 247

Introduction

APL BIT0 S .o 248
Operating System Error MeSSages ... 251
Windows Operating System Error MeSSagesccoooiiiiiiiii 252
APL Error MesSages . 253
DA WS 253
CANNOL CTEATE MAINICo\ttt e 253
CleaT WS 253
COPY INCOMPIELE ... e 254
DEADLOCK ... 254
defn eTTOr ... 254
DOMAIN ERROR . 255
EOF INTERRUPT . 255
EXCE P TION . 255
FIELD CONTENTS RANK ERROR 256
FIELD CONTENTS TOO MANY COLUMNS 256
FIELD POSITION ERROR 256
FIELD CONTENTS TYPE MISMATCH 256
FIELD TYPE BEHAVIOUR UNRECOGNISED .. 256
FIELD ATTRIBUTES RANK ERROR 256
FIELD ATTRIBUTES LENGTH ERROR 256
FULL SCREEN ERROR . . 256
KEY CODE UNRECOGNISED 257
KEY CODE RANK ERROR ... 257
KEY CODE TYPE ERROR ... 257
FORMAT FILE ACCESS ERROR 257
FORMAT FILE ERROR 257
FILE ACCESS ERROR 258
FILE ACCESS ERROR CONVERTING ... 258
FILE COMPONENT DAMAGED ... 258
FILE DAMAGED ... 259
FILE FULL o 259
FILE INDEX ERROR ... 259
FILE NAME ERROR ... 259
FILE NAME QUOTA USED UP ... 260
FILE SYSTEM ERROR ... 260
FILE SYSTEM NO SPACE ... 260
FILE SYSTEM NOT AVAILABLE ... 260
FILE SYSTEM TIES USED UP . 261
FILE TIE ERROR ... 261
FILE TIED ... oo 261
FILE TIED REMOTELY ... 262
FILE TIE QUOTA USED UP 262
FORMAT ERROR ... 262
HOLD ERROR .. 263
incorrect command ... 263
INDEX ERROR 264
INTERNAL ERROR ... 264

Vi

ISMAME ... 265
LENGTH ERROR . 265
LIMIT ERROR . 266
NONCE ERROR 266
NO PIPES 266
NAME 1S IOt @ WS ... it 267
Name already eXiStSo 267
Namespace does NOt EXIStt 267
NOt COPIEd NMAME i 267
not found Name ... 268
not saved this WS 1S NAME 268
PROCESSOR TABLE FULL ... 269
RANK ERROR 269
RESIZE 269
name saved date time ... 270
SYNTAX ERROR ... 271
SYS ©ITOT TUMDET i e 272
TIMEOU T 272
TRANSLATION ERROR ... 272
TRAP ERROR 272
T00 MANY NAMES ... o 273
VALUE ERROR 273
warning duplicate label 273
warning duplicate NAME 274
warning pendent OPeration 274
warning label name present ... 274
warning unmatched brackets ... 275
warning unmatched parentheses ... 275
WAS NAIMIE ... 275
WS FULL 276
ws not found ... 276
WS T00 Lar@e .. oo 276
Operating System Error MeSSagesooii i 276
FILE ERROR 1 NOt OWNET ... 277
FILE ERROR 2 Nosuch file ... 277
FILE ERROR 5T O €IT0r ... 277
FILE ERROR 6 No such device 277
FILE ERROR 13 Permission denied ... 277
FILE ERROR 20 Not a dir€Ctory 277
FILE ERROR 21 Is @ dir€CtOrycooiii i 277
FILE ERROR 23 File table overflow 278
FILE ERROR 24 T0O MANY 0PNoouiiiiii e e 278
FILE ERROR 26 Text file busy ... 278
FILE ERROR 27 File too 1arge ... 278
FILE ERROR 28 No space left 278
FILE ERROR 30 Read only file 278
SyStem BrrOrs ... 279

Symbolic Index 287

Vii

Chapter 1: Introduction

Chapter 1:

Introduction

Workspaces

APL expressions are evaluated within a workspace. The workspace may contain
objects, namely classes, namespaces, operators, functions and variables defined by
the user. APL expressions may include references to primitive operators, functions
and variables provided by APL. These objects do not reside in the workspace, but
space is required for the actual process of evaluation to accommodate temporary data.
During execution, APL records the state of execution through the STATE
INDICATOR which is dynamically maintained until the process is complete. Space
is also required to identify objects in the workspace in the SYMBOL TABLE.
Maintenance of the symbol table is entirely dynamic. It grows and contracts
according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may
subsequently be loaded, or objects may be selectively copied from a saved workspace
into the current workspace.

Workspaces are stored in files whose names must conform to operating system
conventions. When a workspace name is specified without a file suffix, these are
added or implied. For further information, see Installation & Configuration Guide:
WSEXT configuration parameter.

If the name of the file in which the workspace is saved contains spaces, the ws
argument for the system functions) SAVE,)COPY,)PCOPY,)LOAD,) XLOAD and

)DROP should be surrounded by two double-quote (") characters. To include a "
character in the file name, you must specify two adjoining double-quotes (that is,
""", Note however that Windows does not allow double-quotes in file names, so
this effectively applies only to non-Windows systems.

Examples

)SAVE Pete's work
unacceptable char

Chapter 1: Introduction

The above statement fails because the presence of the space in the file name requires
that it be surrounded by "s.

)SAVE "Pete's work"
Pete's work.dws saved Sun Jan 17 16:23:17 2016

)COPY "Pete's work" A B C
.\Pete's work.dws saved Sun Jan 17 16:23:17 2016

)DROP "Pete's work"
Sun Jan 17 16:24:16 2016

Legal Names

APL objects may be given names. A name may be any sequence of characters,
starting with a non-numeric character, selected from the following:
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopgrstuvwxyz
AARAAREGEEEEITITONOOOOORUUDUYR
a4a343aceéeeii118Mn0660660UGGUp
0123456789
AA

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Note that using a standard Unicode font (rather than APL385 Unicode used in the
table above), the last row above would appear as the circled alphabet, ® to @ .

Examples
Legal Illegal
THISAISAAANAME BAD NAME
X1233 3+21
SALES SIH|PRICE
pib_1 1_pjb

Chapter 1: Introduction 3

Arrays

A Dyalog APL data structure is called an array. An array is a rectangular
arrangement of items, each of which may be a single number, a single character, a
namespace reference (ref), another array, or the [JOR of an object. An array which is
part of another array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank,
shape, and depth.

Rank

An array may have 0 or more axes or dimensions. The number of axes of an array is
known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

e An array with 0 axes (rank 0) is called a scalar.
e An array with 1 axis (rank 1) is called a vector.
e An array with 2 axes (rank 2) is called a matrix.
e An array with more than 2 axes is called a multi-dimensional array.

Shape

Each axis of an array may contain zero or more items. The number of items along
each axis of an array is called its shape. The shape of an array is itself a vector. Its
first item is the length of the first axis, its second item the length of the second axis,
and so on. An array, whose length along one or more axes is zero, is called an empty
array.

Depth

An array whose items are all simple scalars (that is, single numbers, characters or
refs) is called a simple array. If one or more items of an array is not a simple scalar
(that is, is another array, or a [JOR), the array is called a nested array. A nested array
may contain items which are themselves nested arrays. The degree of nesting of an
array is called its depth. A simple scalar has a depth of 0. A simple vector, matrix,
or multi-dimensional array has depth 1. An array whose items are all depth 1
subarrays has depth 2; one whose items are all depth 2 subarrays has depth 3, and so
forth.

Type

An array, whose elements are all numeric, is called a numeric array; its TYPE is
numeric. A character array is one in which all items are characters. An array whose
items contain both numeric and character elements is of MIXED type.

Chapter 1: Introduction

Numbers

Dyalog APL supports both real numbers and complex numbers.

Real Numbers

Numbers are entered or displayed using conventional decimal notation (for example,
299792.458) or using a scaled form for example, 2.999792458ES).

On entry, a decimal point is optional if there is no fractional part. On output, a
number with no fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:

a. an integer or decimal number called the mantissa,
b. the letter E or e,
c. an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example

12 23.2% 23.0 2.145E2
12 23.24% 23 214.5

Negative numbers are preceded by the high minus (7) symbol, not to be confused
with the minus (-) function. In scaled form, both the mantissa and the scale may be
negative.

Example

T22 2.145E72 T10.25
~22 0.02145 710.25

Complex Numbers

Complex numbers use the J notation introduced in IBM APL2 and are written as aJb
or ajb (without spaces) where the real and imaginary parts a and b are written as
described above. The capital J is always used to display a value.

Examples

2+71%.5

271

.3j.5

0.3J0.5
1.2E5J 4E™ 4

120000J70.000%

Chapter 1: Introduction

Zilde

The empty vector (10) may be represented by the numeric constant € called ZILDE.

Characters

Characters are entered within a pair of APL quotes. The surrounding APL quotes are
not displayed on output. The APL quote character itself must be entered as a pair of
APL quotes.

Examples

‘DYALOG APL'
DYALOG APL

‘I DON''T KNOW'
I DON'T KNOW

Vs !

Enclosed Elements

An array may be enclosed to form a scalar element through any of the following
means:

» by the enclose function (<)
e by inclusion in vector notation
o as the result of certain functions when applied to arrays

Examples

(c1 2 3),c'ABC'
1 2 3 ABC

(1 2 3) 'ABC'
1 2 3 ABC

12 3
11 12 13
21 22 23

Chapter 1: Introduction

Specification of Variables

A variable is a named array. An undefined name or an existing variable may be
assigned an array by specification with the left arrow («).

Examples

A«<'CHIPS WITH EVERYTHING'
A
CHIPS WITH EVERYTHING

X Y«'ONE' 'TWO'
X

ONE
Y

TWO

Vector Notation

A series of two or more adjacent expressions results in a vector whose elements are
the enclosed arrays resulting from each expression. This is known as vector (or
strand) notation. Each expression in the series may consist of one of the following:

a. a single numeric value

b. single character, within a pair of quotes

¢. more than one character, within a pair of quotes

d. the name of a variable

e. the evaluated input symbol [

f. the quote-quad symbol [

g. the name of a niladic, defined function yielding a result

h. any other APL expression which yields a result, within parentheses

Examples

pA<2 L4 10
3

pTEXT<'ONE' 'TWO'
2

Numbers and characters may be mixed:

pX<«'THE ANSWER IS ' 10

2
X[1]

THE ANSWER IS
X[2] + 32

42

Chapter 1: Introduction

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair
'«~' indicates the phrase 'is equivalent to'.

1 2 <> (1)(2) <« 1 (2) <« (1) 2
2'X'3 «> 2 'X'" 3 > (2) ('X') (3)
1 (2+2) <> (1) ((2+2)) <> ((1)) (2+2)

Vector notation may be used to define an item in vector notation:

pX « 1 (2 3 4) ('THIS' 'AND' 'THAT')

x[2]
2 34
X[3]
THIS AND THAT

Expressions within parentheses are evaluated to produce an item in the vector:

Y « (2+2) 'IS' 4
Y
4 IS 4

The following identity holds:
A B C <> (cA), (<B), <C

Structuring of Arrays

A class of primitive functions re-structures arrays in some way. Arrays may be input
only in scalar or vector form. Structural functions may produce arrays with a higher
rank. The Structural functions are reshape (p), ravel, laminate and catenate (,),
reverse and rotate (), transpose (®), mix and take (1), split and drop (V), enlist (€),
and enclose (<).

Examples
2 2p1 2 3 4

w =
F N

2 2 4p'ABCDEFGHIJKLMNOP'
ABCD
EFGH

IJKL
MNOP
+2 4p'COWSHENS'
COWS HENS

Chapter 1: Introduction 8

Display of Arrays

Simple scalars and vectors are displayed in a single line beginning at the left margin.
A number is separated from the next adjacent element by a single space. The number
of significant digits to be printed is determined by the system variable [JPP whose
default value is 10. The fractional part of the number will be rounded in the last digit
if it cannot be represented within the print precision. Trailing zeros after a decimal
point and leading zeros will not be printed. An integer number will display without a
decimal point.

Examples

0.1 1.0 1.12
0.1 1 1.12

IAI 2 IBI lcl
A 2 BC

326

0.3333333333 0.5 0.1666666667

If a number cannot be fully represented in [JPP significant digits, or if the number
requires more than five leading zeros after the decimal point, the number is
represented in scaled form. The mantissa will display up to [JPP significant digits,
but trailing zeros will not be displayed.

Examples
OpP<«3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E77

Simple matrices are displayed in rectangular form, with one line per matrix row. All
elements in a given column are displayed in the same format, but the format and
width for each column is determined independently of other columns. A column is
treated as numeric if it contains any numeric elements. The width of a numeric
column is determined such that the decimal points (if any) are aligned; that the E
characters for scaled formats are aligned, with trailing zeros added to the mantissae if
necessary, and that integer forms are right-adjusted one place to the left of the
decimal point column (if any). Numeric columns are right-justified; a column which
contains no numeric elements is left-justified. Numeric columns are separated from
their neighbours by a single column of blanks.

Chapter 1: Introduction 9

Examples

2 4p'HANDFIST'
HAND
FIST

123 00.x6 25
6 2 5
12 4+ 10
18 6 15

2 3p2 4+ 6.1 8 10.24 12
2 4 6.1
8 10.24 12

2 4p4 'A' 'B' 5 T0.000000003 'C' 'D' 123.56
LEO AB 5
“3E79 CD 123.56

In the display of non-simple arrays, each element is displayed within a rectangle such
that the rows and columns of the array are aligned. Simple items within the array are
displayed as above. For non-simple items, this rule is applied recursively, with one
space added on each side of the enclosed element for each level of nesting.

Examples
13

c13
12 3

cc13
123

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' &)
ONE 1 TWO 2 THREE 3 FOUR 4

2 4p'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TWO 2
THREE 3 FOUR 4

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated by
one blank line, and hyper-planes of higher dimensions are separated by increasing
numbers of blank lines. In all other respects, multi-dimensional arrays are displayed
in the same manner as matrices.

Chapter 1: Introduction

10

Examples

2 3 4pi2k
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

21 22 23 24

3 1 1 3p'THEREDFOX'
THE

RED

FOX

The power of this form of display is made apparent when formatting informal
reports

Examples

+AREAS<«'West' 'Central' 'East'
West Central East

+PRODUCTS«'Biscuits' 'Cakes' 'Buns' 'Rolls'
Biscuits Cakes Buns Rolls

SALES<«50 5.25 75 250 20.15 900 500
SALES,«80.98 650 1000 90.03 1200
+SALES<«4 3pSALES
50 5.25 75
250 20.15 900
500 80.98 650
1000 90.03 1200

‘' ' PRODUCTS 5., AREAS SALES
West Central East

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650
Rolls 1000 90.03 1200

If the display of an array is wider than the page width, as set by the system variable
0PW, it will be folded at or before JPW and the folded portions indented six spaces.
The display of a simple numeric or mixed array may be folded at a width less than
[PW so that individual numbers are not split across a page boundary.

Chapter 1: Introduction 11

Example
OPW<40

73 20p100
54 22 5 68 68 9% 39 52 84 L4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 64
66 8 64 89 28 44 77 48 24 28 36 17 49

1 39 7 42 69 49 94

76 100 37 25 99 73 76

90 91 7 91 51 52 32

The]display User Command
The user command Jdisplay illustrates the structure of an array.

Examples
ldisplay 'ABC' (1 4p1 2 3 4)

|
ABC fl 2 34

€

Jdisplay ' 'PRODUCTSs.,AREAS SALES A see above

) West Central East
Biscuits| 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650
Rolls 1000 90.03 1200

-€

An explanation of the symbols that appear in the borders can be seen by running
]Jdisplay -7

Chapter 1: Introduction

12

The]boxing User Command

The user command]boxing changes the way in which nested arrays are the
displayed in the Session. The following examples show different settings.

Examples

Jboxing on -style=min
Was OFF -style=min

'ABC' (1 4pl 2 3 4)

ABC|1 2 3 &

Jboxing on -style=mid
Was ON -style=min

"ABC' (1 4p1 2 3 4)

1
ABC123'+f

Jboxing on -style=max

Was ON -style=mid

"ABC' (1 4p1 2 3 4)

|
ABC f123'+

Jboxing on -style=min
Was ON -style=max

Iboxing off
Was ON

"ABC' (1 4p1 2 3 4)
ABC 1 2 3 &4

Shy Results

Functions may return shy results.

A shy or suppressed result is a result that is not automatically displayed in the

Session, but is suppressed. A shy result of an expression may be displayed by using it

as an argument to a function that returns its argument unchanged, by enclosing the

expression in parentheses or by assigning it to [J.

Chapter 1: Introduction 13

Examples
A<10 A Result of assignment is shy
(A<10)

10
DL 2 A Result of delay is shy
O<doL

1.994
foo&88 a Result of Spawn (thread number) is shy
4foo&88

6

See also:

o Model Syntax on page 64
e Shy Result on page 108
o Language Reference Guide: Execute Expression.

Prototypes and Fill ltems

Every array has an associated prototype which is derived from the array's first item.

If the first item is a number, the prototype is 0. Otherwise, if the first item is a
character, the prototype is ' ' (space). Otherwise, if the first item is a (ref to) an
instance of a Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the
prototype is defined recursively as the prototype of each of the array's first item.

Examples:
Array Prototype
12 3.4 0
2 3 5p'hello’ '
99 'b' 66 0
(1 2)(3 4 5) 00
((1 2)3)(4 5 6) (0 0)0
‘hello' 'world' ' '
[ONEW MyClass MyClass
(88 ([ONEW MyClass) 'X"')7 0 MyClass

Chapter 1: Introduction 14

Fill tems

Fill items for an overtake operation, are derived from the argument's prototype. For
each 0 or ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item and
for each class reference in the prototype, there is a ref to a (newly constructed and
distinct) instance of that class that is initialised by the niladic (default) constructor for
that class, if defined.

Examples:
bt1 2
1200
Lt+'ab'
ab

L+(1 2)(3 4 5)
12 345 00 00O
2t[ONEW MyClass
#.[Instance of MyClass] #.[Instance of MyClass]

In the last example, two distinct instances are constructed (the first by [INEW and the
second by the overtake).

Fill items are used in a number of operations including:

e First (> or t) of an empty array
« Fill-elements for overtake
« For use with the Each operator on an empty array

Cells and Sub-arrays

Certain functions and operators operate on particular cells or sub-arrays of an array,
which are identified and described as follows.

K-Cells

A rank-k cell or k-cell of an array are terms used to describe a sub-array on the last k
axes of the array. Negative k is interpreted as r+k where r is the rank of the array,
and is used to describe a sub-array on the leading | k axes of an array.

If X is a 3-dimensional array of shape 2 3 4, the 1-cells are its 6 rows each of 4
elements; and its 2-cells are its 2 matrices each of shape 3 4. Its 3-cells is the array in
its entirety. Its O-cells are its individual elements.

Chapter 1: Introduction 15

Major Cells

The major cells of an array X is a term used to describe the sub-arrays on the leading
dimension of the array X with shape 1 {pX. Using the k-cell terminology, the major
cells are its ~ 1-cells.

The major cells of a vector are its elements (0-cells). The major cells of a matrix are
its rows (1-cells), and the major cells of a 3-dimensional array are its matrices along
the first dimension (2-cells).

Examples

In the following, the major cells of A are 1979, 1990, 1997, 2007, and 2010, those of
B are 'Thatcher', '"Major', 'Blair’, 'Brown', and 'Cameron'; and those
of C are the four 2-by-3 matrices.

A
1979 1990 1997 2007 2010

B
Thatcher
Major
Blair
Brown
Cameron

pB
5 8

O«C<4 2 3p12k
1 2
4+ 5

w o

6 7 8
9 10 11

12 13 14
15 16 17

18 19 20
21 22 23

Using the k-cell terminology, if r is the rank of the array, its major cells are its r-1-
cells.

Note that if the right operand k of the Rank Operator © is negative, it is interpreted
as O[r+k. Therefore the value ~1 selects the major cells of the array.

Chapter 1: Introduction 16

EXxpressions

An expression is a sequence of one or more syntactic tokens which may be symbols
or constants or names representing arrays (variables) or functions. An expression
which produces an array is called an ARRAY EXPRESSION. An expression which
produces a function is called a FUNCTION EXPRESSION. Some expressions do not
produce a result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by
parentheses. If an entire expression results in an array that is not assigned to a name,
then that array value is displayed. (Some system functions and defined functions
return an array result only if the result is assigned to a name or if the result is the
argument of a function or operator.)

Examples
X«2x3-1
2x3-1

4
(2x3)-1

5

Either blanks or parentheses are required to separate constants, the names of
variables, and the names of defined functions which are adjacent. Excessive blanks
or sets of parentheses are redundant, but permitted. If F is a function, then:

F2es F(2) <> (F)2 <> (F) (2) <> F (2) < F ((2))

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

2 e (2)(2) «> (-) 2

Blanks or parentheses are not needed to separate operators from primitive functions,
names or constants. They are permitted with the single exception that a dyadic
operator must have its right argument available when encountered. The following
syntactical forms are accepted:

(+,x) <= (+),x = +'(x)
The use of parentheses in the following examples is not accepted:

+(.)x or (+.)x

Chapter 1: Introduction 17

Functions

A function is an operation which is performed on zero, one or two array arguments
and may produce an array result. Three forms are permitted:

o NILADIC defined for no arguments
e MONADIC defined for a right but not a left argument
e DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially
represents both a monadic and a dyadic function, though it might not be defined for
both. The usage in an expression is determined by syntactical context. If the usage
is not defined an error results.

Functions have long SCOPE on the right; that is, the right argument of the function is
the result of the entire expression to its right which must be an array. A dyadic
function has short scope on the left; that is, the left argument of the function is the
array immediately to its left. Left scope may be extended by enclosing an expression
in parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be
displayed on completion of evaluation of the expression. This applies on assignment
to a variable name. It applies for certain system functions, and may also apply for
defined functions.

Examples
10x5-2xL
~30
2xl
8
5-8
-3
10x~3
~30
(10x5)-2xk4

42

Chapter 1: Introduction 18

Defined Functions

Functions may be defined with the system function (F X, or with the function editor.
A function consists of a HEADER which identifies the syntax of the function, and a
BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional)
arguments. If a function is ambivalent, it is defined with two arguments but with the
left argument within braces ({ }). If an ambivalent function is called monadically,
the left argument has no value inside the function. If the explicit result is to be
suppressed for display purposes, the result is shown within braces. A function need
not produce an explicit result. Refer to Chapter 2 for further details.

Example

v R«{A} FOO B
[1] R<>'MONADIC' 'DYADIC'[0IO+0#[NC'A"]

[2] v

FOO 1
MONADIC

‘X' FOO 'Y'
DYADIC

Functions may also be created by using assignment («).

Function Assignment & Display

The result of a function-expression may be given a name. This is known as
FUNCTION ASSIGNMENT (see also Dfns & Dops on page 104). If the result of a
function-expression is not given a name, its value is displayed. This is termed
FUNCTION DISPLAY.

Examples
PLUS«+
PLUS

+
SUM«+/
SUM

+/

Function expressions may include defined functions and operators. These are
displayed as a V followed by their name.

Chapter 1: Introduction

19

Example

V R<MEAN X
[1] Re(+/X)+pX
\'4

MEAN
VMEAN
AVERAGE<MEAN
AVERAGE
VMEAN
AVG<+MEAN-°,
AVG
VMEAN o,

Operators

A Arithmetic mean

An operator is an operation on one or two operands which produces a function called
a DERIVED FUNCTION. An operand may be a function or an array. Operators are
not ambivalent. They require either one or two operands as applicable to the
particular operator. However, the derived function may be ambivalent. The derived
function need not return a result. Operators have higher precedence than functions.
Operators have long scope on the left. That is, the left operand is the longest
function or array expression on its left. The left operand may be terminated by:

the end of the expression

a function with a function to its left
a function with an array to its left
an array with a function to its left

A

Examples
p X<'WILLIAM' 'MARY' 'BELLE'

an array or function to the right of a monadic operator.

A dyadic operator has short scope on the right. That is, the right operand of
an operator is the single function or array on its right. Right scope may be
extended by enclosing an expression in parentheses.

Chapter 1: Introduction 20

Oo«o[VR™'PLUS' 'MINUS'
V R«<A PLUS B

[1] R<A+B

v

vV R«<A MINUS B
[1] R<A-B

v

PLUS/1 2 3 &4
10

Defined Operators

Operators may be defined with the system function [F X, or with the function editor.
A defined operator consists of a HEADER which identifies the syntax of the
operator, and a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have
one or two arguments, and may or may not produce a result. The header syntax
defines the operator name, its operand(s), the argument(s) to its derived function, and
the result (if any) of its derived function. The names of the operator and its operand
(s) are separated from the name(s) of the argument(s) to its derived function by
parentheses.

Example
vV R<A(F AND G)B
[1] R<(A F B)(A G B)
\%

The above example shows a dyadic operator called AND with two operands (F and
G). The operator produces a derived function which takes two arguments (A and B),
and produces a result (R).

12 +AND=+ 4
16 3

Operands passed to an operator may be either functions or arrays.

12 (3 AND 5) &4
12 3 4+ 12 5 4

12 (x AND 5) &4
48 12 5 4

Chapter 1: Introduction 21

Binding Strength

For two entities X and Y that are adjacent in an expression (that is, X Y), the binding
strength between them and the result of the bind is shown in this table:

Y
A F H MOP | DOP | DOT | IDX
6 A|3 AF|(3 AF|4 F 7 REF|(4 A
F 2 All 4 4 4 F
1 4 4 4 H
AF 2 All
MOP 4 ERR
X
DOP |5 MOP|5 MOP|5 MOP
JOT |5 MOP|5 MOP|5 MOP |4 F
DOT |6 ERR|5 MOP|5 MOP 6 ERR
REF |7 A7 F|7 H|7 MOP|7 DOP
IDX 3 ERR|3 ERR|3 ERR
A : *Array, for example, 0 1 2 'hello' o w
: *Function (primitive/defined/derived/system), for example, + - +.x
myfn OCR {a w}
H : *Hybrid function/operator, thatis, / # \ X
AF : Bound left argument, for example, 2+
MOP : *Monadic operator, for example, =~ ~ &

DOP : Dyadic operator, for example, ¥ [] ¢ @

JOT : Jot, that is, compose/null operand o

DOT : Dot, that is, reference/product .

IDX : square-bracketed expression, for example, [o+1w]
ERR : Error

* indicates a "first-class" entity, which can be parenthesised or named
In this table:

« the higher the number, the stronger the binding
« an empty field indicates no binding for this combination; an error.

For example, in the expression a b.c[d], where a, b, c and d are arrays, the
binding proceeds:

Chapter 1: Introduction 22

ab . c [d]

6 7 6 4 A binding strengths between entities
> a (b.) c [d]

0 7 4
> a (b.c) [d]

6 4

- (a(b.c))[d]

Function Trains

Introduction

A Train is a derived function constructed from a sequence of 2 or 3 functions, or
from an array followed by two functions, which bind together to form a function.

Note that the right-most item of a function train (which is by definition a function)
must be isolated from anything to its right, otherwise it will be bound to that rather
than to the items to its left. This is done using parentheses.

For example, the following expression comprises a function train -, + that is
separated from its argument 2 by parentheses:

(-,%) 2
72 0.5

and means:

1. Calculate the reciprocal of 2
2. Calculate the negation of 2
3. Catenate these 2 results together

Whereas, without the parentheses to identify the function train, the expression means
(as it did before):

1. Calculate the reciprocal of 2
2. Ravel the result of step 1
3. Negate the result of step 2

-,+ 2
~0.5

Chapter 1: Introduction 23

Forks and Atops

The following trains are currently supported where f, g and h are functions and A is
an array:

f
A

Q au
jm it i

The 3-item trains (f g h) and (A g h) are termed forks while the 2-item train
(g h) is termed an atop. To distinguish the two styles of fork, we can use the terms
fgh-fork or Agh-fork.

Trains as Functions

A train is syntactically equivalent to a function and so, in common with any other
function, may be:

named using assignment

applied to or between arguments
consumed by operators as an operand
and so forth.

In particular, trains may be applied to a single array (monadic use) or between 2
arrays (dyadic use), providing six new constructs.

a(f g h)w <> (o f w) g (o h w) A dyadic (fgh) fork
a(A g h)w <> A g (o h w) A dyadic (Agh) fork
a(g h)w < g (o h w) A dyadic atop
(f gh)w «- (f w) g (hw A monadic (fgh) fork
(A g hw <« A g (h w) A monadic (Agh) fork
(g hw < g (hw) A monadic atop
Identifying a Train

For a sequence to be interpreted as a train it must be separated from the argument to
which it is applied. This can be done using parentheses or by naming the derived
function.

Example - fork: negation of catenated with reciprocal

(-,%)5
75 0.2

Chapter 1: Introduction 24

Example - named fork
negrec<«-,*
negrec 5
75 0.2
Whereas, without these means to identify the sequence as a train, the expression:

_’+ 5
“0.2

means the negation of the ravel of the reciprocal of 5.

Idiom Recognition

Function trains lend themselves to idiom recognition, a technique used to optimise
the performance of certain expressions.

Example

An expression to find the first position in a random integer vector X of a number
greater than 999000 is:

X«<?1lebpleb
(X2999000) 11
1704

A function train is not only more concise, it is faster too.
X (1ol 2) 999000
1704

Trains of Trains

As a train resolves to a function, a sequences of more than 3 functions represents a
train of trains. Function sequences longer than 3 are bound in threes, starting from
the right:

fu fv fw fx fy fz - ... fu (fv fw (fx fy fz))

This means that, in the absence of parentheses, a sequence of an odd number of
functions resolves to a 3-train (fork) and an even-numbered sequence resolves to a 2-
train (atop):

e fghijk=>ef(gh(ijk)) A fork(fork(fork))
fghijk- f(gh(ijk)) A atop(fork(fork))

Chapter 1: Introduction

25

Examples
6(+,-,%x,%+)2 A fork:(6+2),((6-2),((6x2),(6+2)))
8 4 12 3
6(0+,-,x,+)2 A atop: ¢ (6+2),
312 4+ 8
IJboxing on
Was OFF
oo, X, T A boxed display of fork
+ s
3 .) .
b+, -, x,+ A boxed display of atop
$
+ 3
H] N s

Jboxing -trains=tree
Was -trains=box
oo, %,E A boxed (tree) display of fork

Chapter 1: Introduction 26

Binding Strengths

The binding strength between the items of a train is less than that of operand-operator
binding. In other words, operators bind first with their function (or array) operands to
form derived functions, which may then participate as items in a train.

Example:
+F £ A fork for mean value
| #
+|#
L/,l/ A fork for min_max
L] |7

This means that any of the four hybrid tokens / # \ % will not be interpreted as a
function if there's a function to its left in the train. In order to fix one of these tokens
as a replicate or expand function, it must be isolated from the function to its left:

(1/1)3 A > 1/ atop 13 > RANK ERROR
RANK ERROR

(t{a/w}t)3 A > (13){a/w}(13) » (13)/(13)
122333

(1(/er)1)3 A > (13)/+(13)
122333

(2/1)3 A Agh-fork is OK
112233

Chapter 1: Introduction 27

Search Functions and Hash Tables

Primitive dyadic search functions, such as 1 (index of) and € (membership) have a
principal argument in which items of the other subject argument are located.

In the case of 1, the principal argument is the one on the left and in the case of €, it
is the one on the right. The following table shows the principal (P) and subject (s)
arguments for each of the functions.

P i1 s Index of

s € P Membership

s nP Intersection
Pus Union

s ~ P Without

P {(Va)tiw} s Matrix Iota (idiom)
PoA and Poy Grade

The Dyalog APL implementation of these functions already uses a technique known
as hashing to improve performance over a simple linear search. (Note that € (find)
does not employ the same hashing technique, and is excluded from this discussion.)

Building a hash table for the principal argument takes a significant time but is
rewarded by a considerably quicker search for each item in the subject.
Unfortunately, the hash table is discarded each time the function completes and must
be reconstructed for a subsequent call (even if its principal argument is identical to
that in the previous one).

For optimal performance of repeated search operations, the hash table may be
retained between calls, by binding the function with its principal argument using the
primitive ° (compose) operator. The retained hash table is then used directly
whenever this monadic derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent
application of the derived function. This usually occurs in one of two ways: either the
derived function is named for later (and repeated) use, as in the first example below
or it is applied repeatedly as the operand of a primitive or defined operator, as in the
second example.

Chapter 1: Introduction 28

Example: naming a derived function.

words«'red' 'ylo' 'grn' 'brn' 'blu' ‘'pnk' 'blk'

find«wordset A monadic find
function

find'blk' 'blu' 'grn' 'ylo' n
7532

find'grn' 'brn' 'ylo' 'red' a fast find

3421

Example: repeated application by (**) each operator.

€o[JA”"'This' 'And' 'That'
1000 100 10O0CO

Idiom Recognition

Idioms are commonly used expressions that are recognised and evaluated internally,
providing a significant performance improvement.

For example, the idiom BV/1pA (where BV is a Boolean vector and A is an array)
would (in earlier Versions of Dyalog APL) have been evaluated in 3 steps as follows:

1. Evaluate pA and store result in temporary variable temp1 (temp1 is just an
arbitrary name for the purposes of this explanation)

2. Evaluate 1temp1 and store result in temporary variable temp2.

3. Evaluate BV/temp2

4. Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety and
processed in a single step as if it were a single primitive function. In this case, the
resultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the /diom List on page 29 table will not be
recognised.

For example, [JAV 1 will be recognised as an idiom, but ([JAV) v will not. Similarly,
(',)/ would not be recognized as the Join idiom.

Chapter 1: Introduction

29

Idiom List

In the following table, arguments to the idiom have types and ranks as follows:

For

Type Description Rank Description

C Character S Scalar or 1-item vector

B Boolean \ Vector

N Numeric M Matrix

P Nested A Array of any rank

X any type

example: NV: numeric vector, CM: character matrix, PV: nested vector.

Idiom Description

ppXA The rank of XA as a 1-element vector

ZpXA The rank of XA as a scalar

BV/1NS The subset of NS corresponding to the 1s in BV

BV/i1pXV The positions in XV corresponding to the 1s in BV

NA>" eXV The §ubset of XV in the index positions defined by NA
(equivalent to XV[NAJ)

XAL1{}XA2 XA1 and XA2 are ignored (no result produced)

XA1{a}XA2 XA1 (XA2 is ignored)

XA1{w}XA2 XA2 (XA1 is ignored)

XA1{o w}XA2 XA1 and XA2 as a two item vector (XA1 XA2)

{0}XA 0 irrespective of XA

{0}"XA 0 corresponding to each item of XA

. /PV The enclose of the i.tems of PV (which must be of depth 2)
catenated along their last axes

~/PV The enclose of the i.tems of PV (which must be of depth 2)
catenated along their first axes

SHXA The item in the top right of XA (OML<2)

+OXA The item in the top right of XA (OML22)

¢, XA The item in the bottom right of XA (OML<2)

1o, A The item in the bottom right of XA (OML22)

Chapter 1: Introduction 30

Idiom Description

0=pXV 1 if XV has a shape of zero, 0 otherwise

0=ppXA 1 if XA has a rank of zero (scalar), 0 otherwise

0==XA 1 if XA has a depth of zero (simple scalar), O otherwise
A simple vector comprising as many items as there are

XM1 rows in XM2, where each item is the number of the first

{(Va) 1w} XM2

row in XM1 that matches each row in XM2. See note
below.

A nested vector comprising vectors that each correspond to
a position in the original vectors of PV — the first vector

1QtPV contains the first item from each vector in PV, padded to
be the same length as the largest vector, and so on
(OML<2)
A nested vector comprising vectors that each correspond to
a position in the original vectors of PV — the first vector

+§oPV contains the first item from each vector in PV, padded to
be the same length as the largest vector, and so on
(OML=22)

. A Boolean mask indicating the leading blank spaces in

N\ =CA
each row of CA

+/M\"' '=CA The number of leading blank spaces in each row of CA

+/~\BA The number of leading 1s in each row of BA

{v\! CV without any leading blank spaces

"#w)/w}CV

{72\ CV without any leading blank spaces

"=w)iw}CV
A nested vector comprising simple character vectors

~o' '"JCA constructed from the rows of CA (which must be of depth
1) with all blank spaces removed

{(+/v\" A nested vector comprising simple character vectors

"#oéw) 1t Vw}CA

constructed from the rows of CA (which must be of depth
1) with trailing blank spaces removed

Sop XA The length of the first axis of each item in XA (OML <2)
top XA The length of the first axis of each item in XA (OML>2)
XAL,<XA2 XA1 redefined to be XA1 with XA2 catenated along its last

axis

Chapter 1: Introduction 31

Idiom Description

XAL=<XA2 ;(;; S1 redefined to be XA1 with XA2 catenated along its first

{(chw)Jw}XA XA sorted into ascending order

{(cYw)Jw}XA XA sorted into descending order

{wldw]}XV XV sorted into ascending order

{wlVw]}XV XV sorted into descending order

{wlAw; 1} XM XM with the rows sorted into ascending

{wl[Yw; 1} XM XM with the rows sorted into descending order

1==XA 1 if XA has a depth of 1 (simple array), 0 otherwise

1== XA 1if XA.has a depth of 0 or 1 (simple scalar, vector, etc.), 0

’ otherwise

OepXA 1 if XA is empty, O otherwise

~0epXA 1 if XA is not empty, 0 otherwise

H#XA The first sub-array along the first axis of XA

-/ XA The first sub-array along the last axis of XA

F#XA The last sub-array along the first axis of XA

/XA The last sub-array along the last axis of XA

*xONA Euler's idiom (accurate when NA is a multiple of 0J0.5)

0=>pXA 1 if XA has an empty first dimension, 0 otherwise (ML <2)

0%5pXA ét;lfef\ii ;1602:5 Sﬁi I;a)ve an empty first dimension, 0

OAV<CA Classic. version only: The. character numbers ('atomic
vector index) corresponding to the characters in CA

LO.5+NA Round to nearest integer
This idiom applies only when NS is negative, when it

XA4=<NS removes the last -NS items from XA along its leading axis.
See note below.

{(chw)[w} These idioms provide the fastest way to sort arrays of any

{(cVYw)lw}

rank

Chapter 1: Introduction 32

Notes

/v and /1p, as well as providing an execution time advantage, reduce intermediate
workspace usage and, consequently, the incidence of memory compactions and the
likelihood of a WS FULL.

NA>""cXV is implemented as XV[NA], which is significantly faster. The two are
equivalent but the former now has no performance penalty.

, / is special-cased only for vectors of vectors or scalars. Otherwise, the expression
is evaluated as a series of concatenations. Recognition of this idiom turns join from
an n-squared algorithm into a linear one. In other words, the improvement factor is
proportional to the size of the argument vector.

>¢ and ¢, now take constant time. Without idiom recognition, the time taken
depends linearly on the number of items in the argument.

0== takes a small constant time. Without idiom recognition, the time taken would
depend on the size and depth of the argument, which in the case of a deeply nested
array could be significant.

181 is special-cased only for a vector of nested vectors, each of whose items is of
the same length.

{(¥a) 14w} can accommodate much larger matrices than its constituent primitives.
It is particularly effective when bound with a left argument using the compose
operator:

find<mate{(da)riw} A find rows in mat table

In this case, the internal hash table for mat is retained so that it does not need to be
generated each time the monadic derived function f ind is applied to a matrix
argument.

{(v\" "#w)/w}and {(+/2\" '=w)lw} are two codings of the same idiom.
Both use the same C code for evaluation.

~o' '"} typically takes a character matrix argument and returns a vector of
character vectors from which all blanks have been removed. An example might be
the character matrix of names returned by the system function [INL. In general, this
idiom accommodates character arrays of any rank.

{(+/v\" "#bw)t " tw} typically takes a character matrix argument and returns a
vector of character vectors. Any embedded blanks in each row are preserved but
trailing blanks are removed. In general, this idiom accommodates character arrays of
any rank.

Chapter 1: Introduction 33

s0op” A (OML<2) and top~ A (OML>2) avoid having to create an intermediate nested
array of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of
each vector.

20p” 'Hi' 'Pete’ A Vector Lengths
2 4

For an array of matrices, it returns a simple array of the number of rows in each
matrix.

Sop [JCR™4ONL 3 A Lines in functions
5 21...

A, <A and A5 <A optimise the catenation of an array to another array along the last
and first dimension respectively.

Among other examples, this idiom optimises repeated catenation of a scalar or vector
to an existing vector.

props,«c 'Posn' 0 O
props,«c'Size' 50 50
vector,«2+4

Note that the idiom is not applied if the value of vector V is shared with another
symbol in the workspace, as illustrated in the following examples:

Example 1: the idiom is used to perform the catenation to V1.

Vi«110
Vi,«11

Example 2: the idiom is not used to perform the catenation to V1, because its value is
at that point shared with V2.

Vi«110
V2«Vi
Vi,«11

Example 3: the idiom is not used to perform the catenation to V in Join[1] because
its value is, at that point, shared with the array used to call the function.

V V<V Join A
[1] V,<A
\'
(110) Join 11
123456789 10 11

Chapter 1: Introduction 34

#£XA, =/ XA, 4#£XA, and </ XA return the first/last rank (O] “1+ppA) sub-array
along the first/last axis of XA. For example, if V is a vector, then:

/v First item of vector

~/V Last item of vector

Similarly, if M is a matrix, then:

-#M First row of matrix
/M First column of matrix
+#M Last row of matrix
/M Last column of matrix

The idiom generalises uniformly to higher-rank arrays.

Euler's idiom *oNA produces accurate results for right argument values that are a
multiple of 0J0.5. This is so that Euler's famous identity 0=1+%00J1 holds,
despite pi being represented as a floating point number.

For clarification; XA $=<«NS. If NS is ~3 then the idiom removes the last -~ 3 (that is,
3) items.

The idiom XM1{ (o) 1 Yw} XM2 is still recognised, but since Version 14.0 is no
faster than XM1 1 XM2.

Parallel Execution

If your computer has more than one CPU or is a multi-core processor, then the scalar
dyadic functions *, 2, =, <, @, |, |, 0, v and A will, when applied to arrays with a
sufficiently large number of elements, execute in parallel in separate system threads.

For example, if you have a computer with 4 cores (either real or virtual) and execute
an expression such as (A+B) where A and/or B contain more than 32,768 elements,
then Dyalog will start 4 separate threads, each performing the division on % of the
elements of the array(s) and simultaneously creating the corresponding % of the
result array. The threads are only started once, and are reused for subsequent multi-
threaded operations.

The maximum number of threads to use can be controlled using 1111T, and the

parallel execution threshold is changed using 1112I. These "tuning" I-beams should
be considered experimental, and may be changed or replaced in a future release. (See
Language Reference Guide: Number of Threads and Parallel Execution Threshold).

Chapter 1: Introduction 35

Note that these scalar dyadic functions are not multi-threaded when applied to arrays
of Boolean or integer values, they are also not multi-threaded for +, - or x when
applied to arrays of 64 bits floating (type 645). Tests show that the overhead of
preparing such arrays for multi-threaded operations outweigh the performance
benefits.

Complex Numbers

A complex number is a number consisting of a real and an imaginary part which is
usually written in the form a+ bi, where a and b are real numbers, and i is the
standard imaginary unit with the property i?= —1.

Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value of
a complex number which is written as aJb or a jb (without spaces). The former
representation (with a capital J) is always used to display a value.

Notation

2+71%.5
2J1

.3j.5
0.3J0.5

1.2E5T74E™4
120000J70.0004

Arithmetic

The arithmetic primitive functions handle complex numbers in the appropriate way.

2j3+.3j.5 A (a+bi)+(c+di) (a+c)+(b+d)i
2.3J33.5

233-.3j5 A (a+bi)-(c+di) = (a-c)+(b-d)i

1.7372

2j3x.3j.5 A (a+bi)(c+di)= ac+bci+adi+bdi?
A = (ac-bd)+(bc+ad)i
~0.9J1.9

The absolute value, or magnitude of a complex number is naturally obtained using
the Magnitude function

134

Chapter 1: Introduction

36

Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...
+3jk
3774

... which when multiplied by the complex number itself, produces the square of its
magnitude.

3j4x3j7h
25

Furthermore, adding a complex number and its conjugate produces a real number:

3j4+3j 74
6

The famous Euler's Identity may be expressed as follows:

1+x00j1 A Euler Identity
0

Circular functions

The basic set of circular functions XoY cater for complex values in Y, while the
following extended functions provide specific features for complex arguments. Note
that a and b are the real and imaginary parts of Y respectively and 6 is the phase of
Y..

(-X) oY X |X oY

-8oY 8 (-1+Y%x2)%0.5
Y 9 a

+Y 10 ||Y

Yx0J1 11 |[b

*Yx0J1 12 |6

Note that 90Y and 110Y return the real and imaginary parts of Y respectively:

9 1103.57J71.2
3.5 71.2

9 110.03.5J71.2 2J3 3J4
3.5 23
1.2 3 4

Chapter 1: Introduction 37

Comparison

In comparing two complex numbers X and Y, X=Y is 1 if the magnitude of X-Y
does not exceed [JCT times the larger of the magnitudes of X and Y; geometrically,
X=Y if the number smaller in magnitude lies on or within a circle centred on the one
with larger magnitude, having radius [JCT times the larger magnitude.

A=R
A=0C
AzD B
. A
. 0
r
N
0
redoct=| A

As with real values, complex values sufficiently close to Boolean or integral values
are accepted by functions which require Boolean or integral values. For example:

2jle™ 14 p 12
12 12

0 vV 1j1e™15
0
Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary
floating-point numbers, regardless of the setting of [JF R. Comparisons between
complex numbers and decimal floating-point numbers will require conversion of the
decimal number to binary to allow the comparison. When [JFR=1287, comparisons
are always subject to [JDCT, not [JCT - regardless of the data type used to represent a
number.

This only really comes into play when determining whether the imaginary part of a
complex number is so small that it can be considered to be on the real line. However,
Dyalog recommends that you do not mix the use of complex and decimal numbers in
the same component of an application.

Chapter 1: Introduction 38

128 Bit Decimal Floating-Point Support

Introduction

The original IEE-754 64-bit binary floating point (FP) data type (also known as type
number 645), that is used internally by Dyalog APL to represent floating-point
values, does not have sufficient precision for certain financial computations —
typically involving large currency amounts. The binary representation also causes
errors to accumulate even when all values involved in a calculation are "exact"
(rounded) decimal numbers, since many decimal numbers cannot be accurately
represented regardless of the precision used to hold them. To reduce this problem,
Dyalog APL includes support for the 128-bit decimal data type described by IEEE-
754-2008 as an alternative representation for floating-point values.

System Variable: Floating-point
Representation

Computations using 128-bit decimal numbers require twice as much space for
storage, and run more than an order of magnitude more slowly on platforms which do
not provide hardware support for the type. At this time, hardware support is only
available from IBM (POWER 6 chips onwards, and recent System z mainframes).
Even with hardware support, a slowdown of a factor of 4 can be expected. For this
reason, Dyalog allows users to decide whether they need the higher-precision decimal
representation, or prefer to stay with the faster and smaller binary representation.

The system variable [JF R (for Floating-point Representation) can be set to the value
645 (the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit decimal
FP. The default value of [JFR is configurable.

Simply put, the value of JFR decides the type of the result of any floating-point
calculation that APL performs. In other words, when entered into the session:

OFr
OFr

DR 1.234% a Type of a floating-point constant
OorR 3+4 A Type of any floating-point result

[FR has workspace scope, and may be localised. If so, like most other system
variables, it inherits its initial value from the global environment.

Chapter 1: Introduction 39

However: Although [JFR can vary, the system is not designed to allow "seamless"
modification during the running of an application and the dynamic alteration of [JFR
is not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of [JFR
when the function is fixed. Similarly, a constant typed into a line in the Session is
evaluated using the value of [JFR that pertained before the line is executed. Thus, it
would be possible for the first line of code above to return 0, if it is in the body of a
function. If the function was edited and while suspended and execution is resumed,
the result would become 1. Also note:

[OFR«1287
x«1+3

OFR«645
x=1+3
1

The decimal number has 17 more 3s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the "reverse" experiment yields 0,
as tolerance is much narrower in the 128-bit universe:

OFR<645
x«1+3

[OFR«1287
x=1+3
0

Since [JFR can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when [JFR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from [JFR in the current namespace.
Conversion (if necessary) will only take place when a new floating-point array is
generated as the result of "a calculation". The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the
expression: [JFR at the time when a computation is performed decides the result type,
alone.

Structural functions generally do NOT change the type, for example:

OFR«1287
x<«1.1 2.2 3.3

[OFR«645

Odr x
1287

Odr 2tx
1287

Chapter 1: Introduction 40

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range- from “1E6145 to 1E6145. Loss of
precision is accepted on conversion from 645 to 1287, but the magnitude of a number
may make the conversion impossible, in which case a DOMAIN ERROR is issued:

OFR<«1287
x<1E1000

OFR«645
x+0
DOMAIN ERROR

WARNING: The use of COMPLEX numbers when [JFR is 1287 is not
recommended, because:

o any 128-bit decimal array into which a complex number is inserted or
appended will be forced in its entirety into complex representation, potentially
losing precision

« all comparisons are done using JDCT when [JFR is 1287, and this is
equivalent to 0 for complex numbers.

Conversion between Decimal and Binary

Conversion of data from Binary to Decimal is logically equivalent to formatting, and
the reverse conversion is equivalent to evaluating input. These operations are
performed according to the same rules that are used when formatting (and evaluating)
numbers with [JPP set to 17 (guaranteeing that the decimal value can be converted
back to the same binary bit pattern). Because the precision of decimal floating-point
numbers is much higher, there will always be a large number of potential decimal
values which map to the same binary number: As with formatting, the rule is that the
SHORTEST decimal number which maps to a particular binary value will be used as
its decimal representation.

Data in component files will be stored without conversion, and only converted when
a computation happens. It should be stored in decimal form if it will repeatedly be
used by application code in which [JFR has the value 1287. Even in applications
which use decimal floating point everywhere, reading old component files containing
arrays of type 645, or receiving data via [JNA, the .NET interface or other external
sources, will allow binary floating-point values to enter the system and require
conversion.

Decimal Comparison Tolerance

When [JFR has the value 1287, the system variable [JDCT will be used to specify
comparison tolerance. The default value of DCT is 1E~28, and the maximum value
i82.3283064365386962890625E 10 (the value is chosen to avoid fuzzy
comparison of 32-bit integers).

Chapter 1: Introduction 41

Name Association and Floating-point
Values

[ONA supports the data type "D" to represent the Densely Packed Decimal (DPD)
form of 128-bit decimal numbers, as specified by the IEEE-754 2008 standard.
Dyalog has decided to use DPD, which is the format used by IBM for hardware
support, on ALL platforms, although "Binary Integer Decimal" (BID) is the format
that Intel libraries use to implement software libraries to do decimal arithmetic.
Experiments have shown that the performance of 128-bit DPD and BID libraries are
very similar on Intel platforms. In order to avoid the added complication of having
two internal representations, Dyalog has elected to go with the hardware format,
which is expected to be adopted by future hardware implementations.

The support libraries for writing APs and DLLs include new functions to extract the
contents of a value of type D as a string or double-precision binary "float" — and
convert data to D format.

Decimal Floats and Microsoft. NET

The Microsoft. NET framework contains a type named System.Decimal, which
implements decimal floating-point numbers. However, it uses a different internal
format from that defined by IEEE-754 2008.

Dyalog APL includes a Microsoft. NET class (called Dyalog.Dec128), which will
perform arithmetic on data represented using the "Binary Integer Decimal” format.
All computations performed by the Dyalog.Dec128 class will produce exactly the
same results as if the computation was performed in APL. A "DCT" property allows
setting the comparison tolerance to be used in comparisons, Ceiling/Floor, etc.).

The Dyalog class is modelled closely after the existing System.Decimal type,
providing the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals,
Finalize, Floor, FromOACurrency, GetBits, GetHashCode, GetType, GetTypeCode,
MemberwiseClone, Multiply, Negate, Parse, Remainder, Round, Subtract, To*,
Truncate, TryParse) and operators (Addition, Decrement, Division, Equality, Explicit,
GreaterThan, GreaterThanOrEqual, Implicit, Increment, Inequality, LessThan,
LessThanOrEqual, Modulus, Multiply, Subtraction, UnaryNegation, UnaryPlus).

The "bridge" between Dyalog and .NET is able to cast floating-point numbers to or
from System.Double, System.Decimal and Dyalog.Dec128 (and perform all other
reasonable casts to integer types etc.). Casting a Dyalog.Dec128 to or from strings
will perform a "lossless" conversion.

Chapter 1: Introduction 42

Incoming .NET data types VT _DECIMAL (96-bit integer) and VT _CY (currency
value represented by a 64-bit two's complement integer, scaled by 10,000) are
converted to 126-bit decimal numbers (DECFs). This conversion is performed
independently of the value of [JFR.

If you want to perform arithmetic on values imported in this way, then you should set
[JFR to 1287, at least for the duration of the calculations.

Note that the .NET interface converts System.Decimal to DECFs but does not
convert System.Int64 to DECFs.

Namespaces

Namespace is a (class 9) object in Dyalog APL. Namespaces are analogous to nested

workspaces.
'Flat' APL Workspace Workspace with Namespaces
LOLD-==========———— - e NEW===mmmmmm oo .
| FOO MAT VEC |
DISPLAY | .Util---------- . |
| IDISPLAY | |
FOO MAT VEC L 1... | |
I b e e e e e e e] I
WsDoc_Init WsDoc---—-—-=—=—====== [

[Init .prt-..fmt--.

WsDoc_Tree
WsDoc_prt_init
WsDoc_current_page

|Tree | ||
| Xref |pagel |
I [}

|
I
|1 |Init]|line
I
|
I

I
|
I
I
I
| WsDoc_Xref
I
I
|
I

They provide the same sort of facility for workspaces as directories do for
filesystems. The analogy, based on DOS, might prove helpful:

Operation Windows Namespace
Create mkdir JNS or [NS
Change cd)CS or [CS
Relative name dirl\dir\file NS1.NS2.0BJ
Absolute name \file\file #.NS.OBJ
Name separator \

Top (root) object \ #

Parent object . ##

Chapter 1: Introduction 43

Namespaces bring a number of major benefits:

They provide lexical (as opposed to dynamic) local names. This means that a defined
function can use local variables and functions which persist when it exits and which
are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL's traditional name-clash problem is ameliorated in several ways:

o Workspaces can be arranged so that there are many fewer names at each
namespace level. This means that when copying objects from saved
workspaces there is a much reduced chance of a clash with existing names.

» Utility functions in a saved workspace may be coded as a single namespace
and therefore on being copied into the active workspace consume only a
single name. This avoids the complexity and expense of a solution which is
sometimes used in 'flat' workspaces, where such utilities dynamically fix local
functions on each call.

« In flat APL, workspace administration functions such as WSDOC must share
names with their subject namespace. This leads to techniques for trying to
avoid name clashes such as using obscure name prefixes like 'AAL 1" This
problem is now virtually eliminated because such a utility can operate
exclusively in its own namespace.

The programming of GUI objects is considerably simplified.

e An object's callback functions may be localised in the namespace of the object
itself.

 Static variables used by callback functions to maintain information between
calls may be localised within the object.

This means that the object need use only a single name in its namespace.

Namespace Syntax

Names within namespaces may be referenced explicitly or implicitly. An explicit
reference requires that you identify the object by its full or relative pathname using a
". ' syntax; for example:

X.NUMB <« 88
sets the variable NUMB in namespace X to 88.

88 UTIL.FOO 99

Chapter 1: Introduction 44

calls dyadic function FOO in namespace UTIL with left and right arguments of 88
and 99 respectively. The interpreter can distinguish between this use of ' . ' and its
use as the inner product operator, because the leftmost name: UTIL is a (class 9)
namespace, rather than a (class 3) function.

The general namespace reference syntax is:
SPACE . SPACE . (...) EXPR

Where SPACE is an expression which resolves to a namespace reference, and EXPR
is any APL expression to be resolved in the resulting namespace.

There are two special space names:
is the top level or 'Root' namespace.
is the parent or space containing the current namespace.

[SE is a system namespace which is preserved across workspace load and clear.

Examples
WSDOC.PAGE.NO +<« 1 A Increment WSDOC page count
#.0ONL 2 A Variables in root space
UTIL.OFX 'Z«DUP A' 'Z«A A' A Fix remote function
##.0ED'FOO' A Edit function in parent space

[OSE.RECORD <« PERS.RECORD A Copy from PERS to [SE

UTIL.(OEX ONL 2) A Expunge variables in UTIL

(o0SE #).(ea¢0NL 9).(ONL 2) A Vars in first [SE
A namespace.

UTIL.&STRING A Execute STRING in UTIL space

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by [JEXPORT (See Language Reference Guide: Export) and
OPATH. If you reference a name that is undefined in the current space, the system
searches for it in the list of exported names defined for the namespaces specified by
OPATH. See Language Reference Guide: Search Path for further details.

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

Chapter 1: Introduction 45

X.(C«AxB)
X.C

10 12 14

16 18 20
NS1.C

10 12 14

16 18 20

Summary

Apart from its use as a decimal separator (3.14),'." is interpreted by looking at the
type or class of the expression to its left:

Template Interpretation Example

o, Outer product 2 3 o.x L4 5
function. Inner product 2 3 +.x L4 5
ref. Namespace reference 2 3 x.foo 4 5
array. Reference array expansion (x y).0Oncc'foo'

Namespace Reference Evaluation

When the interpreter encounters a namespace reference, it:

1. Switches to the namespace.
2. Evaluates the name.
3. Switches back to the original namespace.

If for example, in the following, the current namespace is # . W, the interpreter
evaluates the line:

A <« X.Y.DUP MAT
in the following way:

Evaluate array MAT in current namespace W to produce argument for function.
Switch to namespace X .Y within W.

Evaluate function DUP in namespace W. X .Y with argument.

Switch back to namespace W.

Assign variable A in namespace W.

kW=

Namespaces and Localisation

The rules for name resolution have been generalised for namespaces.

Chapter 1: Introduction

46

In flat APL, the interpreter searches the state indicator to resolve names referenced

by a defined function or operator. If the name does not appear in the state indicator,

then the workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home'
namespace. When a name is referenced, the interpreter searches only those lines of

the state indicator which belong to the home namespace. If the name does not appear
in any of these lines, the home namespace-global value is assumed.

For example, if #.FN1 calls XX.FN2 calls #.FN3 calls XX.FNUu4, then:

FN1:

FN2:

FN3:

FNG:

is evaluated in #
can see its own dynamic local names
can see global names in #

is evaluated in XX
can see its own dynamic local names
can see global names in XX

is evaluated in #

can see its own dynamic local names
can see dynamic local names in FN1
can see global names in #

is evaluated in XX

can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

Chapter 1: Introduction 47

The following picture illustrates how APL looks down the stack to find names:

A0 0 +0n >

atb+c [8] h references a, b and c
vh;a [7] h localises a
[6] g calls X.h

a+b+c [5] g references a, b and c
vVgs;as| ¢ [4] g localises a and c

[3] f calls Y.g

T+T+c [2] f references a, b and c
vfsasb [1] f localises a and b
abec abec [0] global names a, b and c
=X Y in namspaces X and Y

The above diagram represents the SI stack, growing upwards from two namespaces X
and Y, which each have three global names a, b and c.

1.
2.

Hw

el I

Function f in X localises names a and b.
Function f references names a, b and c.

v fsasb
[1] atb+c
[2] Y.g

The interpreter looks down the stack and finds local names a and b in f's
header and c in namespace X.

Function f calls function g in namespace Y.
Function g in Y localises names a and c.
Function g references names a, b and c.

V gsasc
[1] a+b+c
[2] X.h

The interpreter looks down the stack and finds local names a and c in g's
header and b in namespaces Y.

Function g calls function h in namespace X.
Function h in X localises name a.
Function h references names a, b and c.

V hsa
[1] a+b+c

Chapter 1: Introduction 48

The interpreter looks down the stack and finds local name a in h's header; b
in f's header; and c in namespace X.

Namespace References

A namespace reference, or ref for short, is a unique data type that is distinct from
and in addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

JNS NS1 A Make a namespace called NS1
NS1.A<«1 A and populate it with variables A
NS1.B«2 3p16 A and B

NS1 A expression results in a ref

#.NS1

You may assign a ref; for example:
X<NS1
X

#.NS1

In this case, the display of X informs you that X refers to the named namespace
#.NS1.

You may also supply a ref as an argument to a defined function or a dfn:

vV FOO ARG
[1] ARG

v

FOO NS1
#.NS1

The name class of a ref'is 9.

Onc ' X!
9

You may use a ref to a namespace anywhere that you would use the namespace itself.
For example:

X.A

[N

X.B

123
L 56

Chapter 1: Introduction 49

Notice that refs are references to namespaces, so that if you make a copy, it is the
reference that is copied, not the namespace itself. This is sometimes referred to as a
shallow as opposed to a deep copy. It means that if you change a ref, you actually
change the namespace that it refers to.

X A+<1
X.A
2
NS1.A
2

Similarly, a ref passed to a defined function is call-by-reference, so that
modifications to the content or properties of the argument namespace using the
passed reference persist after the function exits. For example:

V FOO nsref
[1] nsref.B+<nsref.A
\'
FOO NS1
NS1.B
3 45
6 7 8
FOO X
NS1.B
56 7
8 9 10

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

X.(C«AxB)
X.C

10 12 14

16 18 20
NS1.C

10 12 14

16 18 20

Unnamed Namespaces

The monadic form of JNS makes a new (and unique) unnamed namespace and
returns a ref to it.

One use of unnamed namespaces is to represent hierarchical data structures; for
example, a simple employee database:

Chapter 1: Introduction

50

The first record is represented by JOHN which is a ref to an unnamed namespace:

JOHN<[INS "'
JOHN
#.[Namespace]

JOHN.FirstName<«'John'
JOHN.FirstName
John

JOHN.LastName<«'Smith'
JOHN.Age<50

Data variables for the second record, PAUL, can be established using strand, or
vector, assignment:

PAUL<[NS "'
PAUL.(FirstName LastName Age<«'Paul' 'Brown' Llk)

The function SHOW can be used to display the data in each record (the function is
split into 2 lines only to fit on the printed page). Notice that its argument is a ref.

V R«<SHOW PERSON
[1] R<PERSON.FirstName,' ',PERSON.LastName
[2] R, «' is ',sPERSON.Age

\'

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is 4k4

An alternative version of the function illustrates the use of the :With :EndWith

control structure to execute an expression, or block of expressions, within a
namespace:

V R<SHOW1 PERSON
[1] :With PERSON

[2] R«FirstName,' ',LastName,' is ', (wAge)
[3] :EndWith
\'
SHOW1 JOHN

John Smith is 50

In this case, as only a single expression is involved, it can be expressed more simply

using parentheses.

Chapter 1: Introduction 51

V R«SHOW2 PERSON
[1] R<PERSON. (FirstName,' ',LastName,' is ',(wAge))
\'
SHOW2 PAUL
Paul Brown is 4k4

Dfns also accept refs as arguments:

SHOW3<«{
w.(FirstName,' ',LastName,' is ',sAge)
}

SHOW3 JOHN
John Smith is 50

Arrays of Namespace References

You may construct arrays of refs using strand notation, catenate (,) and reshape (p).

EMP«JOHN PAUL
pEMP

EMP
#.[Namespace] #.[Namespace]

Like any other array, an array of refs has name class 2:

ONC "EMP'
2

Expressions such as indexing and pick return refs that may in turn be used as
follows:

EMP[1].FirstName
John

(2>EMP) . Age
Ll

The each (") operator may be used to apply a function to an array of refs:

SHOW EMP
John Smith is 50 Paul Brown is L4u

An array of namespace references (refs) to the left of a'.' is expanded according to
the following rule, where x and y are refs, and exp is an arbitrary expression:

(x y).exp » (x.exp)(y.exp)

If exp evaluates to a function, the items of its argument array(s) are distributed to
each referenced function. In the dyadic case, there is a 3-way distribution among: left
argument, referenced functions and right argument.

Chapter 1: Introduction 52

Monadic function f:

(x y).f de > (x.f d)(y.f e)

Dyadic function g:

ab (xy).g de > (a x.gd)(by.ge)

An array of refs to the left of an assignment arrow is expanded thus:

(x y).acc d > (x.a<c)(y.a<«d)

Note that the array of refs can be of any rank. In the limiting case of a simple scalar
array, the array construct: refs.exp is identical to the scalar construct: ref .exp

Note that the expression to the right of the '.' pervades a nested array of refs to its

left:

((u v)(x y)).exp = ((u.exp)(v.exp))((x.exp)(y.exp))

Note also that with successive expansions (u v).(x y z). .., the final number
of "leaf" terms is the product of the number of refs at each level.

Examples:

JOHN.

Children<[JNS™""' "'

pJOHN.Chi ldren

JOHN.

JOHN

JOHN.
JOHN.

PAUL
PAUL
PAUL

Children[1].FirstName<«'Andy'

.Children[1].Age<23

Children[2].FirstName«'Katherine'
Children[2].Age<«19

.Children<[NS™"" "'
.Children[1].(FirstName Age<«'Tom' 25)
.Children[2].(FirstName Age<«'Jamie' 22)

Chapter 1: Introduction 53

EMP<JOHN PAUL
pEMP

(2EMP).Children.(FirstName Age)
Andy 23 Katherine 19

ldisplay (22EMP).Children.(FirstName Age)

|-

|

| . | . . |

| | |Tom| 25 | | |Jamie| 22 | |
[| - | ' ' |

! 1 1 1

EMP.Children a Is an array of refs
#.[Namespace] #.[Namespace] #.[Namespace]

EMP.Children.(FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

Distributed Assignment

Assignment pervades nested strands of names to the left of the arrow. The
conformability rules are the same as for scalar (pervasive) dyadic primitive functions
such as '+'. The mechanism can be viewed as a way of naming the parts of a
structure.

Examples:

EMP. (FirstName Age)
JOHN 43 PAUL 44

EMP.(FirstName Age)<«('Jonathan' 21)('Pauline' 22)

EMP.(FirstName Age)
Johnathan 21 Pauline 22

A Distributed assignment is pervasive
JOHN.Children.(FirstName Age)
Andy 23 Katherine 19

JOHN.Children.(FirstName Age)<«('Andrew' 21)('Kate'
9)

JOHN.Children.(FirstName Age)
Andrew 21 Kate 9

Chapter 1: Introduction 54

More Examples:
((a b)(c d))«(1 2)(3 &) A a<l O b<2 0 c«3 ¢ d«k

((Ojo Oml)vec)«0 Oav A Oio«0 ¢ Oml«0 ¢ vec<Jav
(i (j k))+«<1 2 A i+l 0 jH+e2 O k+<«2
A Naming of parts:
((first last) sex (street city state))<«napvec
A Distributed assignment in :For loop:
:For (i j)(k L) :In array
A Ref array expansion:

(x y).(first last)«('John' 'Doe')('Joe' 'Blow')
(f1 f2).(b1 b2).Caption«c'OK' 'Cancel’

A Structure rearrangement:

rotatel«{ A Simple binary tree rotation.
(a b c)d ecw
a b(c d e)

}

rotate3«{ A Compound binary tree rotation.

(a b(c d e))f g«w
(a b c)d(e f g)

Chapter 1: Introduction

Distributed Functions

Namespace ref array expansion syntax applies to functions too.

JOHN.PLOT«{twp™'O"}
JOHN.PLOT 10
1]
oo
oo
oooo
00000
000000
0000000
00000000
000000000
0000000000

PAUL.PLOT«{(w, " 1)p"'0"'}

PAUL.PLOT 10
o o
o o
O

a

OoOoOono
OoOooOono

o o e |

o o e e |

o o e o e

o e o

EMP.PLOT<110
0o o
O

em
O

oo

0oo

0000

00ooo
000000
0000000
00000000
000000000
0000000000

OOo0O»
OOO0

OOoOo0Oo0Odo

OOoOoOoOoOoOoOodon

orary vector of functions)

a
O
0
0
O
O
O

o o e e

o o e e o o
OoOOoOoOoOoOoOodn

o e e o o

Chapter 1: Introduction

56

(x y).ONL 2 3

varx funy
(x y).0ONLc2 3
funx funy
varx vary
(x y).(ONL")e2 3
varx funx vary funy
'v'(x y).ONL 2 3
varx
'vf'(x y).ONL 2 3
varx funy
'vf'(x y).0ONLc2 3
varx funy
x.0ONL 2 3
funx
varx

(x y).0ONLc2 3
funy
vary

funx
varx

((u v)(x y)).0ONLec2 3
funv funx funy
varv varx vary

funu
varu

(1 2)3 4(w(x y)z).+1 2(3 4)

23 55 78

A x:vars, y:fns

A x&y: vars&fns

A x&y: separate vars&fns
:v-vars,

y:v-fns

tv-vars, y:f-fns

:v-varsé&fns,

:f-vars&fns

depth 0 ref

depth 1 refs

depth 2 refs

arg distribution.

Chapter 1: Introduction 57

Namespaces and Operators

A function passed as operand to a primitive or defined operator, carries its namespace
context with it. This means that if subsequently, the function operand is applied to an
argument, it executes in its home namespace, irrespective of the namespace from
which the operator was invoked or defined.

Examples
VAR<99 A #.VAR

JNS X

#.X
X.VAR<«T717 A X.VAR
X.OFX'Z«FN R' 'Z<«R,VAR'

NS Y

Y.VAR<«88 A Y.VAR
Y.OFX'Z«(F OP)R' 'Z«F R'

X.FN"13
177 277 3 177

X.FN 'VAR:'
VAR: 77

X.FN Y.OP 'VAR:'
VAR: 77

¢ Y.OP'VAR'
99

Chapter 1: Introduction 58

Serialising Namespaces

The Serialisation of an array is its conversion from its internal representation, which
may contain pointers to other structures in the workspace, into a self-contained series
of bytes. This allows the array to be written to a file, transmitted over a socket or
used in a variety of other ways. The de-serialisation of an array is the conversion
back to an internal format whose content and structure is identical to the original
array.

If an array contains a reference to a namespace or object that is within the same
array, it can be serialised and de-serialised normally.

If an array contains a reference to a namespace or object that is not internal to the
array itself, this presents a problem, which is resolved as follows:

1. If the reference is a direct reference to Root (#) or to [JSE, it is serialised as a
reference to that symbol, but the contents of # or JSE are not included. When
the array is de-serialised, this results in a reference to the Root (#) or [JSE in
the current workspace. The newly reconstituted array is not strictly identical to
the original because the contents of # or JSE may be different.

2. If the reference is to an arbitrary external namespace or object, a copy of that
object is included but its path is discarded. When the array is de-serialised, the
copy is reconstituted as a sibling (that is, as a child of the same parent as the
de-serialised array). In this case the contents of the external namespace or
object are preserved, but not its path. The newly reconstituted array is not
strictly identical to the original because the path to the external reference has
changed.

3. If however, the external namespace or object itself contains an external
reference, the operation fails with DOMAIN ERROR.

Chapter 1: Introduction

59

The following example uses 220I but applies equally to an array serialised by, for
example (JF APPEND.

Examples:
"A' NS "
IBI DNS L)
lcl DNS L)
A.b<B
B.c«C

s«<1 (2201I)A
Jerase A B C
)Jobs

New«<0(2201)s
New

New.b

New.b.c

Jclear
clear ws
IAI DNS L)
IBI DNS L)
IXIDNS [}
"X.C'ONS "'
A.b<B
B.c«X.C
s«<1(2201)A
DOMAIN ERROR: Namespace is not self contained
s+«1(2201)A

A

Note that a successful 0(220I) does not mean thata 1 (220I) on the result will
succeed. If the original reference was to, say, the MenuBar of JSE you cannot
reconstitute that in #.

Chapter 1: Introduction 60

External Variables

An external variable is a variable whose contents (value) reside not in the workspace,
but in a file. An external variable is associated with a file by the system function
[OXT. If at the time of association the file exists, the external variable assumes its
value from the contents of the file. If the file does not exist, the external variable is
defined but a VALUE ERROR occurs if it is referenced before assignment.
Assignment of an array to the external variable or to an indexed element of the
external variable has the effect of updating the file. The value of the external
variable or the value of indexed elements of the external variable is made available in
the workspace when the external variable occurs in an expression. No special
restrictions are placed on the usage of external variables.

Normally, the files associated with external variables remain permanent in that they
survive the APL session or the erasing of the external variable from the workspace.
External variables may be accessed concurrently by several users, or by different
nodes on a network, provided that the appropriate file access controls are established.
Multi-user access to an external variable may be controlled with the system function
[JF HOLD between co-operating tasks.

Refer to the sections describing the system functions OXT and [JFHOLD in Chapter 6
for further details.

Examples
"ARRAY"' OXT 'V
V<110
V[2] + 5
gex'v'
"ARRAY"' OXT 'F'

F
123456789 10

Chapter 1: Introduction 61

Component Files

A component file is a data file maintained by Dyalog APL. It contains a series of
APL arrays known as components which are accessed by reference to their relative
positions or component number within the file. A set of system functions is provided
to perform a range of file operations. (See Language Reference Guide: Component
Files.) These provide facilities to create or delete files, and to read and write
components. Facilities are also provided for multi-user access including the
capability to determine who may do what, and file locking for concurrent updates.
(See the Dyalog Programming Reference Guide).

Auxiliary Processors

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users
with additional facilities. They run as separate tasks, and communicate with the
Dyalog APL interpreter through pipes (UNIX) or via an area of memory (Windows).
Typically, APs are used where speed of execution is critical, such as in screen
management software, or for utility libraries. Auxiliary Processors may be written in
any compiled language, although 'C' is preferred and is directly supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external
functions are fixed in the active workspace. Each external function behaves as if it
was a locked defined function, but is in effect an entry point into the Auxiliary
Processor. An external function occupies only a negligible amount of workspace.

Although Auxiliary Processors are still supported, Dyalog recommends that
DLLs/shared libraries, called via the [INA interface should be used on all platforms in
future, and that existing APs are converted to DLLs/shared libraries.

na.htm

Chapter 1: Introduction

62

Chapter 2: Defined Functions & Operators 63

Chapter 2:

Defined Functions & Operators

A defined function is a program that takes 0, 1, or 2 arrays as arguments and may
produce an array as a result. A defined operator is a program that takes 1 or 2
functions or arrays (known as operands) and produces a derived function as a
result. To simplify the text, the term operation is used within this chapter to mean
function or operator.

Traditional Functions and Operators

Tradtional Functions and Operators are the original user-defined functions and
operators that are part of the APL standard. They are referred to herein as Traditional
or TradFns to distinguish them from Dfns and Dops which are unique to Dyalog.

TradFns may be defined and edited using the Dyalog Editor or may be instantiated
from an array containing source code using the system function [JF X. The converse
system functions [JCR, [JVR, [NR return the original source code.

A defined function or operators is composed of lines. The first line (line 0) is called
the header. Remaining lines are APL statements, called the bod)y.

The header consists of the following parts:

1. its model syntactical form,
2. an optional list of local names, each preceded by a semi-colon (;) character,
3. an optional comment, preceded by the symbol f.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

Chapter 2: Defined Functions & Operators 64

Model Syntax

The model for the defined operation identifies the name of the operation, its valence,
and whether or not an explicit result may be returned. Valence is the number of
explicit arguments or operands, either 0, 1 or 2; whence the operation is termed
NILADIC, MONADIC or DYADIC respectively. Only a defined function may be
niladic. There is no relationship between the valence of a defined operator, and the
valence of the derived function which it produces. Defined functions and derived
functions produced by defined operators may be ambivalent, that is, may be
executed monadically with one argument, or dyadically with two. An ambivalent
operation is identified in its model by enclosing the left argument in braces.

The value of a result-returning function or derived function may be suppressed in
execution if not explicitly used or assigned by enclosing the result in its model within
braces. Such a suppressed result is termed SHY.

The tables below show all possible models for defined functions and operators
respectively.

Defined Functions

Result Niladic Monadic Dyadic Ambivalent
None f fy X fy {X} £ Y
Explicit Ref Ref Y ReX f Y R«{X} f Y
Suppressed {R}«f {R}«f Y [{R}eX f Y |{R}<{X} Ff Y

Note: the right argument Y and/or the result R may be represented by a single name,
or as a blank-delimited list of names surrounded by parentheses. For further details,
see Namelists on page 69.

Derived Functions produced by Monadic Operator

Result Monadic Dyadic Ambivalent

None (A op)Y X(A op)Y {X}(A op)Y
Explicit R<(A op)Y R<X(A op)Y R<{X}(A op)Y
Suppressed {R}<(A op)Y [{R}<X(A op)Y [{R}«{X}(A op)Y

Chapter 2: Defined Functions & Operators

Derived Functions produced by Dyadic Operator

Result Monadic Dyadic Ambivalent
None (A op B)Y X(A op B)Y {X}(A op B)Y
Explicit R<(A op B)Y |R«X(A op B)Y [R«<{X}(A op B)Y
{R}«(A op {R}<X(A op {R}<{X}(A op
Suppressed B)Y B)Y B)Y
Statements

A statement is a line of characters understood by APL. It may be composed of:

1. a LABEL (which must be followed by a colon :), or a CONTROL
STATEMENT (which is preceded by a colon), or both,

2. an EXPRESSION (see Expressions on page 16),

3. a SEPARATOR (consisting of the diamond character ¢ which must separate
adjacent expressions),

4. a COMMENT (which must start with the character f).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ¢. Any characters occurring
to the right of the first comment symbol () that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by ¢ are taken
in left-to-right order as they occur in the line. For output display purposes, each
separated expression is treated as a separate statement.

Examples

5x10
50

MULT:
50

MULT:
50
8

MULT:
50

8

5x10

5x10 ¢ 2x4

5x10 ¢ 2x4

A MULTIPLICATION

Chapter 2: Defined Functions & Operators 66

Global & Local Names

The following names, if present, are local to the defined operation:

1. the result,

2. the argument(s) and operand(s),

3. additional names in the header line following the model, each name preceded
by a semi-colon character,

4. labels,

5. the argument list of the system function JSHADOW when executed,

6. aname assigned within a dfn.

All names in a defined operation must be valid APL names. The same name may be
repeated in the header line, including the operation name (whence the name is
localised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic
operation. The name of a label may be the same as a name in the header line. More
than one label may have the same name. When the operation is executed, local names
in the header line after the model are initially undefined; labels are assigned the
values of line numbers on which they occur, taken in order from the last line to the
first; the result (if any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the
array to the left of the function when called; and the right argument (if any) takes the
value of the array to the right of the function when called. In the case of a defined
operator, the left operand takes the value of the function or array to the left of the
operator when called; and the right operand (if any) takes the value of the function or
array to the right of the operator when called.

During execution, a local name temporarily excludes from use an object of the same
name with an active definition. This is known as LOCALISATION or
SHADOWING. A value or meaning given to a local name will persist only for the
duration of execution of the defined operation (including any time whilst the
operation is halted). A name which is not local to the operation is said to be
GLOBAL. A global name could itself be local to a pendent operation. A global name
can be made local to a defined operation during execution by use of the system
function [JSHADOW. An object is said to be VISIBLE if there is a definition
associated with its name in the active environment.

Chapter 2: Defined Functions & Operators 67

Examples
A<1
vV F
[1] A<10
[2] W
F A <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A
10
A<1
JERASE F
vV FsA
[1] A<10
[2] Vv
F A <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
A
1

Any statement line in the body of a defined operation may begin with a LABEL. A
label is followed by a colon (:). A label is a constant whose value is the number of
the line in the operation defined by system function [JF X or on closing definition
mode.

The value of a label is available on entering an operation when executed, and it may
be used but not altered in any expression.

Example

OVR'PLUS'
v R«{A} PLUS B
[1] +DYADIC p=~2=[NC'A' ¢ R«B ¢ -END
[2] DYADIC: R«A+B
[3] END:
v

1 0OSTOP'PLUS'

2 PLUS 2
PLUS[1]

DYADIC
2

END

Chapter 2: Defined Functions & Operators 68

Locals Lines

Locals Lines are lines in a defined function or operator that serve only to define local
names.

A Locals Line may appear anywhere between line [0] and the first executable
statement in the function or operator. Locals lines may be interspersed with blank
lines and comments. A Locals Line is identified by starting with a semicolon,
prefixed optionally by whitespace. It may contain a comment at the end.

A Locals Line must be of the form ; name ; name ; name where name is any valid
APL name or localisable system variable. The names are localised on entry to the
function exactly as if they were specified as locals on line [0].

Example
V r«<foo ysasb A some locals
;csd A some more locals
(a b c d)«y
r<a+b-cxd
v

The function f oo shown above localises names a, b, c and d (the indentation on
line [1] in this example is entirely optional)

Syntactical errors on Locals Lines are detected when the user attempts to fix the
function using the Editor or [JF X and will causes the operation to fail.

Chapter 2: Defined Functions & Operators 69

Namelists

The right argument and the result of a function may be specified in the function
header by a single name or by a Namelist. In this context, a Namelist is a blank-
delimited list of names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no
need to localise them explicitly using semi-colons.

If the right argument of a function is declared as a Namelist, the function will only
accept a right argument that is a vector whose length is the same as the number of
names in the Namelist. Calling the function with any other argument will result in a
LENGTH ERROR in the calling statement. Otherwise, the elements of the argument
are assigned to the names in the Namelist in the specified order.

Example:

V IDN«Date2IDN(Year Month Day)
[1] 'Year is ',sYear
[2] ‘Month is ',%Month
[3] ‘Day is ',sDay

Date2IDN 2004 4 30
Year is 2004
Month is &4
Day is 30

Date2IDN 2004 4
LENGTH ERROR
Date2IDN 2004 4

A

Note that if you specify a single name in the Namelist, the function may be called
only with a 1-element vector right argument. If the resulf of a function is declared as
a Namelist, the values of the names will automatically be stranded together in the
specified order and returned as the result of the function when the function
terminates.

Example:

V (Year Month Day)<«Birthday age
[1] Year<+1949+age
[2] Month<l
[3] Day<«30

Birthday 50
1999 4 30

Chapter 2: Defined Functions & Operators 70

Locked Functions & Operators

A defined operation may be locked by the system function [JLOCK.

Once locked, and operation may not be displayed or edited and the system functions
OCR, ONR and (VR return empty results.

Stop, trace and monitor settings are cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain
pendent when execution is suspended. Instead, the state indicator is cut back to the
point where the locked operation was invoked.

Function Declaration Statements

Function Declaration statements are used to identify the characteristics of a function
in some way.

The following declarative statements are provided.

e :Access
o :Attribute
 :Implements
 :Signature

With one exception, these statements are not executable statements and may
theoretically appear anywhere in the body of the function. However, it is
recommended that you place them at the beginning before any executable statements.
The exception is:

:Implements Constructor <[:Base exprl]>

In addition to being declarative (declaring the function to be a Constructor) this
statement also executes the Constructor in the Base Class whether or not it includes
:Base expr. Its position in the code is therefore significant.

Chapter 2: Defined Functions & Operators 71

Access Statement

tAccess

:Access <Private|Public><Instance|Shared>

:Access <WebMethod>

The : Access statement is used to specify characteristics for functions that
represent Methods in classes (see Methods on page 145). It is also applicable to

Classes and Properties.

Element

Description

Private|Public

Specifies whether or not the method is accessible from
outside the Class or an Instance of the Class. The
defaultis Private.

Instance|Shared

Specifies whether the method runs in the Class or
Instance. The default is Instance.

WebMethod

Specifies that the method is exported as a web
method. This applies only to a Class that implements a
Web Service.

Overridable

Applies only to an Instance Method and specifies that
the Method may be overridden by a Method in a
higher Class. See below.

Override

Applies only to an Instance Method and specifies that
the Method overrides the corresponding Overridable
Method defined in the Base Class. See below

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base

Class.

However, a Method declared as being Overridab le is replaced in-situ (that is,
within its own Class) by a Method of the same name in a higher Class if that Method
is itself declared with the Override keyword. For further information, see
Superseding Base Class Methods on page 148.

Chapter 2: Defined Functions & Operators 72

WebMethod

Note that : Access WebMethod is equivalent to:
:Access Public

:Attribute System.Web.Services.WebMethodAttribute

Attribute Statement tAttribute

:Attribute <Name> [ConstructorArgs]

The : Attribute statement is used to attach .NET Attributes to a Method (or
Class).

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to
the extra information in attributes to determine how these items can be used.
Attributes are saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor
Examples

:Attribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

Chapter 2: Defined Functions & Operators 73

Implements Statement :Implements

The : Implements statement identifies the function to be one of the following
types.

:Implements Constructor <[:Base exprl]>
:Implements Destructor

:Implements Method <InterfaceName.MethodName>
:Implements Trigger <namel><,name2,name3,...>
:Implements Trigger x

Element Description

Constructor |Specifies that the function is a Class Constructor.

Specifies that the Base Constructor be called with the result

:Base expr . -
P of the expression expr as its argument.

Destructor Specifies that the function is a Class Destructor.

Specifies that the function implements the Method
Method MethodName whose syntax is specified by Interface
InterfaceName.

Identifies the function as a Trigger Function which is
activated by changes to variable namel, name2, and so
Trigger forth.

Trigger * specifies a Global Trigger that is activated by the
assignment of any global variable in the same namespace.

Signature Statement :Signature

:Signature <rslttype<«><name><arglitype argliname>,...

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify
a different result type.

Element Description

rslttype Specifies the data type for the result of the method
name Specifies the name of the exported method.
argntype Specifies the data type of the nth parameter
argnname Specifies the name of the nth parameter

Chapter 2: Defined Functions & Operators 74

Argument and result data types are identified by the names of .NET Types which are
defined in the .NET Assemblies specified by JUSING or by a : USING statement.

Examples

In the following examples, it is assumed that the .NET Search Path (defined by
:Using or JUSING includes 'System'.

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

:Signature String[]«Format Object Array

The next statement specifies that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3
parameters. The first parameter is of type System.Double and is named
Dimension. The second is of type System.Object and is named Argl. The
third is of type System.ObJject and is named Arg2.

:Signature Object«Catenate Double Dimension,...
...0Object Argl, Object Arg2

The next statement specifies that the function is exported as a method named
IndexGen whose result is an array of type System. Int32 and which takes 2
parameters. The first parameter is of type System.Int32 and is named N. The
second is of type System.Int32 and is named Origin.

:Signature Int32[]«IndexGen Int32 N, Int32 Origin

The next block of statements specifies that the function is exported as a method
named Mix. The method has 4 different signatures; that is, it may be called with 4
different parameter/result combinations.

:Signhature Int32[,]«Mix Double Dimension,
...Int32[] Vectl, Int32[] Vec2

:Signature Int32[,]«Mix Double Dimension,...
Int32[] Vecl, Int32[] Vec2, Int32 Vec3

:Signature Double[,]«Mix Double Dimension,
Double[] Vecl, Double[] Vec2

:Signature Double[,]«Mix Double Dimension, ...
Double[] Vecl, Double[] Vec2, Double[]

Vec3

Chapter 2: Defined Functions & Operators 75

Control Structures

Control structures provide a means to control the flow of execution in your APL
programs.

Traditionally, lines of APL code are executed one by one from top to bottom and the
only way to alter the flow of execution is using the branch arrow. So how do you
handle logical operations of the form "If this, do that; otherwise do the other"?

In APL this is often not a problem because many logical operations are easily
performed using the standard array handling facilities that are absent in other
languages. For example, the expression:

STATUS«(1+AGE<16)>'Adult' 'Minor'

sets STATUS to "Adult' if AGE is 16 or more; otherwise sets STATUS to
‘Minor'.

Things become trickier if, depending upon some condition, you wish to execute one
set of code instead of another, especially when the code fragments cannot
conveniently be packaged as functions. Nevertheless, careful use of array logic,
defined operators, the execute primitive function and the branch arrow can produce
high quality maintainable and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations
and decisions. Apart from providing greater affinity with more traditional languages,
Control structures may enhance comprehension and reduce programming errors,
especially when the logic is complex. Control structures are not, however, a
replacement for the standard logical array operations that are so much a part of the
APL language.

Control Structures are blocks of code in which the execution of APL statements
follows certain rules and conditions. Control structures are implemented using a set
of control words that all start with the colon symbol (). Control Words are case-
insensitive.

There are a number of different types of control structures defined by the control
words, : If, :While, :Repeat, : For (with the supplementary control words : In
and :InEach), :Select, :With, :Trap, :Hold and :Disposable. Each
one of these control words may occur only at the beginning of an APL statement and
indicates the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These
are :Else,:Elself, :AndIf, :0OrIf, :Until, :Caseand :CaselList.

Chapter 2: Defined Functions & Operators 76

A third set of control words is used to identify the end of a particular control

structure. These are : EndIf, :EndWhile, :EndRepeat, :EndFor,
:EndSelect, :EndWith, :EndTrap, :EndHold and :EndDisposable.

Although formally distinct, these control words may all be abbreviated to : End.

Finally, the : GoTo, :Return, :Leave and : Continue control words may be
used to conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as : Else and :ElseIf, may occur only at
the beginning of a line or expression in a diamond-separated statement. The only
exceptions are : In and : InEach which must appear on the same line within a

: For expression.

Key to Notation
The following notation is used to describe Control Structures within this section:
aexp an expression returning an array,
bexp an expression returning a single Boolean value (0 or 1),
var loop variable used by : For control structure,
code 0 or more lines of APL code, including other (nested) control
structures,
either one or more : AndIf statements, or one or more :OrIf
statements. For further details, see below.
I
I I
| <= | <= -
andor || I I I
code | code |
I I I I
I I I I
:AndIf bexp----- ' :0rIf bexp------ '
I I
| <= - !
I
Notes

Code preceding :0rIf and :AndIf

Code that precedes a : OrIf control statement, for example, code placed between a

: If statement and a subsequent : OrIf, will be executed only if the outer condition
is false. If instead the outer condition is true, there is no need to execute the : OrIf
statement , so it and any preceding lines of code are skipped.

Chapter 2: Defined Functions & Operators 77

Code that precedes a : AndIf control statement, for example, code placed between a
: If statement and a subsequent : AndIf, will only be executed if the outer

condition is true. If instead the outer condition is false, there is no need to execute the
:AndIf statement, so it and any preceding lines of code are skipped.

The above behaviour may be examined using the Tracer.

A potential use for code before a :OrIf or : AndIf is to prepare for the conditional
test. This preparatory work will only be done if required. For example:

:If x A if x is false, skip everything up to the :EndIf
y<..A set up stuff for the condition on the next Lline
tAndIf y

do stuff
:EndIf

Warning

With the exception of a diamondised statement, a control statement that should not
be followed by an expression will generate an error if an expression is supplied.

A line in a function consisting of a control statement followed by a ¢ and subsequent
expression(s) is not currently disallowed but may exhibit unexpected behaviour. In
particular, the line will not honour [JSTOP and will not be metered by JMONITOR.
This syntax is not recommended.

If Statement :If bexp

The simplest : If control structure is a single condition of the form:

[1] :If AGE<21

[2] expr 1
[3] expr 2
[5] tEndIf

If the test condition (in this case AGE <21) is true, the statements between the : If
and the : EndIf will be executed. If the condition is false, none of these statements
will be run and execution resumes after the : EndIf. Note that the test condition to
the right of : If must return a single element Boolean value 1 (true) or 0 (false).

: If control structures may be considerably more complex. For example, the
following code will execute the statements on lines [2-3] if AGE<21 is I (true), or
alternatively, the statement on line [6] if AGE<21 is 0 (false).

Chapter 2: Defined Functions & Operators 78

[1] :If AGE<21

[2] expr 1
[3] expr 2
[5] :Else

[6] expr 3

[7] :EndIf

Instead of a single condition, it is possible to have multiple conditions using the
:ElseIf control word. For example:

[1] :If WINEAGE<5

[2] 'Too young to drink'

[5] tElseIf WINEAGE<10

[6] "Just Right'

[7] :ElselIf WINEAGE<15

[8] "A bit past its prime'
[9] :Else

[10] ‘Definitely over the hill'

[11] :EndIf

Notice that APL executes the expression(s) associated with the first condition that is
true or those following the : E L se if none of the conditions are true.

The : AndIf and :OrIf control words may be used to define a block of conditions
and so refine the logic still further. You may qualify an : If oran :ElseIf with

one or more :AndIf statements or with one or more :OrIf statements. You may
not however mix : AndIf and :OrIf in the same conditional block. For example:

[1] :If WINE.NAME='Chateau Lafitte'
[2] :AndIf WINE.YEARe1962 1967 1970
[3] 'The greatest?'

[4] :ElseIf WINE.NAME='Chateau Latour'
[5] :0rif WINE.NAME='Chateau Margaux'
[6] :0Orif WINE.PRICE>100

[7] "Almost as good'
[8] :Else
[9] '"Everyday stuff'
[10] :EndIf

Please note that in a : If control structure, the conditions associated with each of the
condition blocks are executed in order until an entire condition block evaluates to
true. At that point, the APL statements following this condition block are executed.
None of the conditions associated with any other condition block are executed.
Furthermore, if an : AndIf condition yields O (false), it means that the entire block
must evaluate to false so the system moves immediately on to the next block without
executing the other conditions following the failing : AndIf. Likewise, if an
:0OrIf condition yields 1 (true), the entire block is at that point deemed to yield
true and none of the following :OrIf conditions in the same block are executed.

Chapter 2: Defined Functions & Operators

:If Statement

andor

—_———0 —m—— .
o
a
o

Chapter 2: Defined Functions & Operators 80

While Statement :While bexp

The simplest :Whi Le loop is :

[1] I<0

[2] :While I<100
[3] expri
[4] expr2
[5] I«I+1

[6] :EndWhile

Unless expri or expr2 alter the value of I, the above code will execute lines [3-
4] 100 times. This loop has a single condition; the value of I. The purpose of the

:EndWhi Le statement is solely to mark the end of the iteration. It acts the same as
if it were a branch statement, branching back to the :Whi Le line.

An alternative way to terminate a : Whi L e structure is to use a :Unti L statement.
This allows you to add a second condition. The following example reads a native file
sequentially as 80-byte records until it finds one starting with the string 'Widget'
or reaches the end of the file.

[1] 1«0

[2] :While I<[ONSIZE ~1

[3] REC<[INREAD ~1 82 80
(4] I«<I+pREC

[5] :Until 'Widget'=6pREC

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using : AndIf and :0OrIf. For example:

[1] :While 100>1
[2] :AndIf 100>
[3] i j«foo i j
[4] :Until 100<i+j
[5] :0OrIf i<0

[6] :0OrIf j<O

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less than
or equal to 100. If either test fails, the iteration stops. Then, after i and j have been
recalculated by f oo, the iteration stops if i+ j is equal to or greater than 100, or if
either i or j is negative.

Chapter 2: Defined Functions & Operators 81

:While Statement

:While bexp
|
| |
| andor
| |
[<-==---- '
|
code
|
| |
:End[While] :Until bexp
| |
| - .
| | |
| | andor
| | |
| [<-=---- '
| |
|<-===-mmmeo - !
|
Repeat Statement :Repeat

The simplest type of :Repeat loop is as follows. This example executes lines [3-
5] 100 times. Notice that as there is no conditional test at the beginning of a
:Repeat structure, its code statements are executed at least once.

[1] I<0

[2] :Repeat
[3] expri
[4] expr2
[5] I«I+1

[6] :Until I=100

You can have multiple conditional tests at the end of the loop by adding : AndIf or

:0OrIf expressions. The following example will read data from a native file as 80-
character records until it reaches one beginning with the text string 'Widget ' or
reaches the end of the file.

[1] :Repeat

[2] REC<[INREAD ~1 82 80
[3] :Until 'Widget'=6pREC
[4] :0rIf 0=pREC

Chapter 2: Defined Functions & Operators 82

A :Repeat structure may be terminated by an : EndRepeat (or : End) statement
in place of a conditional expression. If so, your code must explicitly jump out of the
loop using a : Leave statement or by branching. For example:

[1] :Repeat

[2] REC<[JNREAD ~1 82 80
[3] :If 0=pREC

[4] :0rIf 'Widget'=6pREC
[5] :Leave

[6] :EndIf

[7] :EndRepeat

:Repeat Statement

iRepeat
code
I
i i
iEnd[Repeat] iUntil bexp
| R .
| | |
| | andor
I | |
| | <-mmmmv !
| |
I< —————————————— !
For Statement :For var :In[Each] aexp

Single Control Variable

The : For loop is used to execute a block of code for a series of values of a
particular control variable. For example, the following would execute lines [2-3]
successively for values of I from 3 to 5 inclusive:

[1] tFor I :In 3 4 5
[2] exprl I

[3] expr2 I

[4] :EndFor

Chapter 2: Defined Functions & Operators 83

The way a : For loop operates is as follows. On encountering the : For, the
expression to the right of : In is evaluated and the result stored. This is the control
array. The control variable, named to the right of the : For, is then assigned the
first value in the control array, and the code between : For and :EndFor is
executed. On encountering the : EndF or, the control variable is assigned the next
value of the control array and execution of the code is performed again, starting at
the first line after the : For. This process is repeated for each value in the control
array.

Note that if the control array is empty, the code in the : For structure is not
executed. Note too that the control array may be any rank and shape, but that its
elements are assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code
resizes (and compacts) all your component files

[1] :For FILE :In (40OFLIB '')~""' "

[2] FILE OFTIE 1
[3] OFRESIZE 1
[4] OFUNTIE 1

[5] :EndFor

You may also nest : For loops. For example, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] TS<«0

[2] :For FILE :In (J0FLIB "')~"" '

[3] FILE OFTIE 1

[4] START END<«2p[JFSIZE 1

[5] :For COMP :In (START-1)41END-1
[6] TS[«"1+[JFREAD FILE COMP
[7] :EndFor

[8] [OFUNTIE 1

[9] :EndFor

Multiple Control Variables

The : For control structure can also take multiple variables. This has the effect of
doing a strand assignment each time around the loop.

For example :For a b ¢ :in (1 2 3)(4 5 6),setsa b c«1 2 3, first
time around the loopand a b c«4 5 6, the second time.

Another example is :For i j :In 1pMatrix, which sets i and j to each row
and column index of Matri x.

Chapter 2: Defined Functions & Operators 84

:InEach Control Word

:For var ... :InEach value
In a : For control structure, the keyword : InEach is an alternative to : In.

For a single control variable, the effect of the keywords is identical but for multiple
control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:

tFor a b c :In (1 2 3)(3 4+ 5)(5 6 7)(7 8 9)
O<a b ¢
:EndFor

:For a b ¢ :InEach (1 35 7)(2 4 6 8)(3 57 9)
O«a b ¢
:EndFor

In each case, the output from the loop is:

~NoOorTw B+~
ooNFN
O NOTWw

Notice that in the second case, the number of items in the values vector is the same
as the number of control variables. A more typical example might be.

:For a b ¢ :InEach avec bvec cvec
:EndFor

Here, each time around the loop, control variable a is set to the next item of avec, b
to the next item of bvec and c to the next item of cvec.

:For Statement

|
:For var :In[Each] aexp

code

|
:End[For]
|

Chapter 2: Defined Functions & Operators 85

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending upon
the value of an array. For example, the following displays 'I is 1' if the variable
I hasthevaluel, 'I is 2'ifitis2,or 'I is neither 1 nor 2'ifithas
some other value.

[1] :Select I
[2] :Case 1

[3] 'T is 1'

[4] :Case 2

[5] 'T is 2'

[6] tElse

[7] 'IT is neither 1 nor 2'

[8] :EndSelect

In this case, the system compares the value of the array expression to the right of the

: Select statement with each of the expressions to the right of the : Case
statements and executes the block of code following the one that matches. If none
match, it executes the code following the : E L se (which is optional). Note that
comparisons are performed using the = primitive function, so the arrays must match
exactly. Note also that not all of the : Case expressions are necessarily evaluated
because the process stops as soon as a matching expression is found.

Instead of a : Case statement, you may also use a : Casel ist statement. If so, the
enclose of the array expression to the right of : Se lect is tested for membership of
the array expression to the right of the : Casel i st using the € primitive function.

Note also that any code placed between the : Se lect and the first : Case or
:Casel ist statements are unreachable; future versions of Dyalog APL may
generate an error when attempting to fix functions which include such code.

Example

[1] :Select 76 6
[2] :Case 6 6

[3] 'Box Cars'

[4] :Case 1 1

[5] ‘Snake Eyes'
[6] :CaselList 2p"16

[7] '"Pair'

[8] :CaselList (16), ¢16
[9] 'Seven'

[10] :Else

[11] "Unlucky'

[12] :EndSelect

Chapter 2: Defined Functions & Operators 86

:Select Statement

:Select aexp

I

J¢mmimmmmmmm i ————_——_——————— - .
| |
B et e e e e e |
I | | | |
| Else :Case aexp :CaselList aexp |
| | | | |
| | | €mmmmmmmmmm e ! |
I | | |
| code code |
| | | |
| o ' N '
I

:End[Select]

With Statement :With obj

:With is a control structure that may be used to simplify a series of references to an
object or namespace. : Wi th changes into the specified namespace for the duration
of the control structure, and is terminated by :End[With]. obj is either the name
of or a reference to a namespace. For example, you could update several properties of
a Grid object F . G as follows:

:With F.G
Values<«<4 3p0
RowTitles<«'North' 'South' 'East' 'West'
ColTitles«'Cakes' 'Buns' 'Biscuits'
:EndWith

:With is analogous to [ICS in the following senses:

e The namespace argument to : Wi th is interpreted relative to the current
space.

o With the exception of those with name class 9, local names in the containing
defined function continue to be visible in the new space.

¢ Global references from within the :Wi th control structure are to names in the
new space.

 Exiting the defined function from within a : Wi th control structure causes the
space to revert to the one from which the function was called.

On leaving the : Wi th control structure, execution reverts to the original namespace.
Notice however that the interpreter does not detect branches (=) out of the control
structure. : Wi th control structures can be nested in the normal fashion:

Chapter 2: Defined Functions & Operators 87

[1] :With 'x' A Change to #.x
[2] :With 'y A Change to #.x.y
[3] :With [SE A Change to [SE
[4] A .. in [SE

[5] :EndWith A Back to #.x.y
[6] :EndWith A Back to #.x

[7] :EndWith A Back to #

:With Statement
I

:With namespace (ref or name)

code

I
tEnd[With]
I

Hold Statement t:Hold tkns

Whenever more than one thread tries to access the same piece of data or shared
resource at the same time, you need some type of synchronisation to control access to
that data. This is provided by : Hold.

:Ho L d provides a mechanism to control thread entry into a critical section of code.
tkns must be a simple character vector or scalar, or a vector of character vectors.
tkns represents a set of "tokens", all of which must be acquired before the thread
can continue into the control structure. : Ho L d is analogous to the component file
system [(JFHOLD which is used to synchronise access between processes. See also
Language Reference Guide: File Hold.

Within the whole active workspace, a token with a particular value may be held only
once. If the hold succeeds, the current thread acquires the tokens and execution
continues with the first phrase in the control structure. On exit from the structure, the
tokens are released for use by other threads. If the hold fails, because one or more of
the tokens is already in use:

1. If there is no : E | se clause in the control structure, execution of the thread is
blocked until the requested tokens become available.

2. Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the : E | se clause.

tkns can be either a single token:

Chapter 2: Defined Functions & Operators 88

a
‘Red"’
"#.Utq L

'"Program Files'

... or a number of tokens:

‘red' 'green' 'blue'
‘doe' 'a' 'deer'

, 'abc'

0nt 9

Pre-processing removes trailing blanks from each token before comparison, so that,
for example, the following two statements are equivalent:

:Hold 'Red' 'Green'
:Hold V2 5p'Red Green'

Unlike [JFHOLD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when
multiple threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace,
and then updates a structure in its parent space. The holds will allow all "sibling"
namespaces to update concurrently, but will constrain updates to the parent structure
to be executed one at a time.

tHold [cs'' A Hold child space
e A Update child space
:Hold ##.0cs"'' A Hold parent space
cen A Update Parent space
:EndHold
:EndHold

However, with the nesting of holds comes the possibility of a "deadlock". For
example, consider the two threads:

Thread 1 Thread 2

tHold 'red' :Hold 'green'
;I:Ic;ld ‘green’ ;l:k.)ld ‘red’
:EndHold :EndHold

:EndHold :EndHold

In this case if both threads succeed in acquiring their first hold, they will both block
waiting for the other to release its token.

If this deadlock situation is detected acquisition of the tokens is abandoned. Then:

Chapter 2: Defined Functions & Operators 89

1. Ifthereis an : E L se clause in the control structure, execution jumps to the
:Else clause.
2. Otherwise, APL issues an error (1008) DEADLOCK.

You can avoid deadlock by ensuring that threads always attempt to acquire tokens in
the same chronological order, and that threads never attempt to acquire tokens that
they already own.

Note that token acquisition for any particular : Ho L d is atomic, that is, either al/ of
the tokens or none of them are acquired. The following example cannot deadlock:

Thread 1 Thread 2
:Hold 'red'

e :Hold 'green' 'red'
:Hold 'green' .
ce :EndHold
:EndHold
:EndHold

Examples

:Ho Ll d could be used for example, during the update of a complex data structure that
might take several lines of code. In this case, an appropriate value for the token
would be the name of the data structure variable itself, although this is just a
programming convention: the interpreter does not associate the token value with the
data variable.

:Hold'Struct'

ce A Update Struct
Struct « ...

:EndHold

The next example guarantees exclusive use of the current namespace:

:Hold [CS"' A Hold current space
:EndHold

The following example shows code that holds two positions in a vector while the
contents are exchanged.

:Hold 3 'to fm
:If >/vec[fm to]
vec[fm to]«vec[to fm]
:End
:End

Chapter 2: Defined Functions & Operators 90

Between obtaining the next available file tie number and using it:

:Hold '[OFNUMS'
tie«1+[/0,0FNUMS
fname [OFSTIE tie

:End

The above hold is not necessary if the code is combined into a single line:
fname [FSTIE tie<«1+[/0,JFNUMS

or,
tie«fname [OFSTIE O

Note that : Ho L d, like its component file system counterpart [JF HOLD, is a device to
enable co-operating threads to synchronise their operation.

:Ho L d does not prevent threads from updating the same data structures concurrently,
it prevents threads only from :Ho L ding the same tokens.

:Hold Statement

I
:Hold token(s)

code

|

| --mmm e :

| |

| :Else
| |

| code
| |

| <-mmmm- :

|

:End[Hold]

|
High-Priority Callbacks

:Ho L d with a non-zero number of tokens is not permitted in a high-priority callback
and an attempt to use it will cause the error:

DOMAIN ERROR: Cannot :Hold within high priority callback
See Interface Guide: High-Priority Callbacks.

Chapter 2: Defined Functions & Operators 91

Trap Statement :Trap ecode

: Trap is an error trapping mechanism that can be used in conjunction with, or as an
alternative to, the [JTRAP system variable. It is equivalent to APL2's [JEA, except that
the code to be executed is not restricted to a single expression and is not contained
within quotes (and so is slightly more efficient).

ecode is an integer scalar or vector containing the list of event codes which are to
be handled during execution of the segment of code between the : Trap and : End
[Trap] statements. Note that event codes 0 and 1000 are wild cards that means any
event code in a given range. See APL Error Messages on page 248.

Operation

The segment of code immediately following the : Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
:End[Trapl.

If an error occurs which is not specified by ecode, it is processed by outer : Traps,
[OTRAPs, or by the default system processing in the normal fashion.

If an error occurs, whose event code matches ecode:

o If the error occurred within a sub-function, the system cuts the state indicator
back to the function containing the : Trap keyword. In this respect, : Trap
behaves like JTRAP witha 'C' qualifier.

e Ifthe : Trap segment contains a : Case[List] ecode statement whose
ecode matches the event code of the error that has occurred, execution
continues from the statement following that : Case[List] ecode.

¢ Otherwise, if the : Trap segment contains a : E | se statement, execution
continues from the first statement following the : E L se statement.

» Otherwise, execution continues from the first statement following the : End
[Trap] and no error processing occurs.

Note that the error trapping is in effect only during execution of the initial code
segment. When a trapped error occurs, further error trapping is immediately disabled
(or surrendered to outer level : Traps or JTRAPSs). In particular, the error trap is no
longer in effect during processing of : Case[List]'s argument or in the code
following the : Case[List] or : E Ll se statement. This avoids the situation
sometimes encountered with JTRAP where an infinite "trap loop" occurs.

Note that the statement : Trap € results in no errors being trapped.

Chapter 2: Defined Functions & Operators 92

Examples

vV Lx
[1] :Trap 1000 A Cutback and exit on interrupt
[2] Main
[3] :EndTrap

v

V ftie«Fcreate file A Create null component file
[1] :Trap 22 A Trap FILE NAME ERROR
[2] ftie«file OFCREATE 0 A Try to create file.
[3] :Else
[4] ftieefile OFTIE O A Tie the file.
[5] file OFERASE ftie A Drop the file.
[6] file [OFCREATE ftie A Create new file.
[7] :EndTrap

\4

V Lx A Distinguish various cases

[1] :Trap 0 1000

[2] Main ..

[3] :Case 1002

[4] 'Interrupted ...'

[5] :CaselList 1 10 72 76

[6] 'Not enough resources'
[7] :CaselList 17+120

[8] 'File System Problem'
[9] :Else

[10] "Unexpected Error'
[11] :EndTrap

Note that : Traps can be nested:

V ntie«Ntie file A
[1] :Trap 22 A
[2] ntie<file [ONTIE O A
[3] tElse
[4] :Trap 22 A
[5] ntie<(file,'.txt")ONTIE O n
[6] :Else
[7] ntie«file [ONCREATE O A
[8] :EndTrap
[9] :EndTrap

Tie native file
Trap FILE NAME ERROR
Try to tie file

Trap FILE NAME ERROR
Try with .txt extn

Create null file.

Chapter 2: Defined Functions & Operators 93

:Trap Statement

:Trap <ecode>

code

|

[¢-m-mmmmm .
| [
o= o ————- [
| [[
| :Else :Case[List] <ecode> |
| [[[
| [| [
| [[[
| code code |
| [[[
| P L '
|

:End[Trap]
|

Where ecode is a scalar or vector of [[TRAP event codes.

Note that within the : Trap control structure, : Case is used for a single event code
and :Caselist for a vector of event codes.

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to -~ (branch) and causes execution to jump
to the line specified by the first element of aexp.

The following are equivalent. See Language Reference Guide: Branch for further
details.

-Exit
:GoTo Exit

>(N<I«I+1)/End
:GoTo (N<I<«I+1)/End

~1+[JLC
:GoTo 1+[LC

-10
:GoTo 10

Chapter 2: Defined Functions & Operators 94

Return Statement :Return

A :Return statement causes a function to terminate and has exactly the same
effect as ~0.

The :Return control word takes no argument.

A :Return statement may occur anywhere in a function or operator.

Leave Statement :Leave

A :Leave statement is used to explicitly terminate the execution of a block of
statements within a : For, :Repeat or :Whi le control structure.

The :Leave control word takes no argument.

Continue Statement :Continue

A :Continue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :Whi Le control loop.

When executed within a : For loop, the effect is to start the body of the loop with
the next value of the iteration variable.

When executed within a :Repeat or :Whi Le loop, if there is a trailing test that test
is executed and, if the result is true, the loop is terminated. Otherwise the leading
test is executed in the normal fashion.

Section Statement :Section

Functions and scripted objects (classes, namespaces etc.) can be subdivided into
Sections with : Section and :EndSection statements. Both statements may be
followed by an optional and arbitrary name or description. The purpose is to split the
function up into sections that you can open and close in the Editor, thereby aiding
readability and code management. Sections have no effect on the execution of the
code, but must follow the nesting rules of other control structures.

Chapter 2: Defined Functions & Operators 95

Disposable Statement :Disposable

The Dyalog interface to .NET involves the creation and removal of .NET objects.
Many such objects are managed in that the NET Common Language RunTime
(CLR) automatically releases the memory allocated to the object when that object is
no longer used. However, it is not possible to predict when the CLR garbage
collection will occur. Furthermore, the garbage collector has no knowledge of
unmanaged resources such as window handles, or open files and streams.

Typically, .NET classes implement a special interface called IDisposable which
provides a standard way for applications to release memory and other resources when
an instance is removed. Furthermore, the C# language has the using keyword,
which "Provides a convenient syntax that ensures the correct use of IDisposable
objects."

The :Disposable array statement in Dyalog APL provides a similar facility to
C#'s using. array may be a scalar or vector of namespace references.

When the block is exited, any .NET objects in array that implement
IDisposable will have IDisposable.Dispose called on them.

Note that exit includes normal exit as the code drops through :EndDisposable,
or if an error occurs and is trapped, or if branch (=) is used to exit the block, or
anything else.

See also: .NET Interface Guide: .Disposing of .NET Objects.

Example (Normal Exit)
:Disposable f<«[INEW Font

:EndDisposable

In the above example, when the : EndDisposab Le statement is reached, the
system disposes of the Font object f (and all the resources associated with it) by
calling (IDisposable)f.Dispose(). A subsequent reference to f would
generate VALUE ERROR.

Example (Normal Exit)
:Disposable fonts«[JNEW “Font Font

;EndDisposable

In the above example, Dispose () is called on each of the Font objects in
fonts during the processing of : EndDisposable.

Chapter 2: Defined Functions & Operators 96

Example (Branch Exit)
:Disposable fonts<«[INEW “Font Font
N

:EndDisposable

In this example, Dispose () is called on the Font objects in fonts during the
processing of the branch statement 0.

Example (TrapExit)
strap O
:Disposable fonts<[INEW “Font Font
£0
;EndDisposable
telse
O«'failed’
tendif

Here, the objects are disposed of when the DOMAIN ERROR generated by the
expression +0 causes the stack to be cut back to the : E | se clause. At this point (just
before the execution of the : E L se clause) the name class of fonts becomes 0.

:Disposable Statement

:Disposable array

code

|
:End[Disposable]
|

Chapter 2: Defined Functions & Operators 97

APL Line Editor

The APL Line Editor described herein is included for completeness and for
adherence to the ISO APL standard. Dyalog recommends the use of the more
powerful Editor and Tracer in preference to the APL Line Editor. Full details of these
facilities can be found in the UI Guides for your version of Dyalog APL, as well as
in the descriptions of [JED and) ED which appear in the Dyalog APL Language
Reference Guide.

Using the APL Line Editor, functions and operators are defined by entering
Definition Mode. This mode is opened and closed by the Del symbol, V. Within this
mode, all evaluation of input is deferred. The standard APL line editor (described
below) is used to create and edit operations within definition mode.

Operations may also be defined using the system function [JF X (implicit in a [JED
fix) which acts upon the canonical (character), vector, nested or object representation
form of an operation. (See Language Reference Guide: Fix Definition for details.)

Functions may also be created dynamically or by function assignment.

The line editor recognises three forms for the opening request.

Creating Defined Operation

The opening V symbol is followed by the header line of a defined operation.
Redundant blanks in the request are permitted except within names. If acceptable,
the editor prompts for the first statement of the operation body with the line-number
1 enclosed in brackets. On successful completion of editing, the defined operation
becomes the active definition in the workspace.

Example
VR«FOO
[1] R<«10
[2] Vv
FOO
10

The given operation name must not have an active referent in the workspace,
otherwise the system reports defn error and the system editor is not invoked:

JVARS
SALES X Y

VR<SALES Y
defn error

Chapter 2: Defined Functions & Operators 98

The header line of the operation must be syntactically correct, otherwise the system
reports defn error and the system editor is not invoked:

VR<A B C D:G
defn error

Listing Defined Operation

The v symbol followed by the name of a defined operation and then by a closing Vv,
causes the display of the named operation. Omitting the function name causes the
suspended operation (that is, the one at the top of the state indicator) to be displayed
and opened for editing.

Example

vFOOvV

vV R<FOO
[1] R«10

v

)SI
#.FOO[1] =

v

vV R<FOO
[1] R«10
[2]

Editing Active Defined Operation

Definition mode is entered by typing V followed optionally by a name and editing
directive.

The v symbol on its own causes the suspended operation (that is, the one at the top
of the state indicator) to be displayed. The editor then prompts for a statement or
editing directive with a line-number one greater than the highest line-number in the
function. If the state indicator is empty, the system reports defn error and
definition mode is not entered.

The v symbol followed by the name of an active defined operation causes the display
of the named operation. The editor then prompts for input as described above. If the
name given is not the name of an active referent in the workspace, the opening
request is taken to be the creation of a new operation as described in paragraph 1. If
the name refers to a pendent operation, the editor issues the message warning
pendent operation prior to displaying the operation. If the name refers to a
locked operation, the system reports defn error and definition mode is not entered.

Chapter 2: Defined Functions & Operators 99

The v symbol followed by the name of an active defined operation and an editing
directive causes the operation to be opened for editing and the editing directive
actioned. If the editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the operation.
If the name refers to a pendent operation, the editor issues the message warning
pendent operation prior to actioning the editing directive. If the name refers
to a locked operation, the system reports defn error and definition mode is not
entered.

On successful completion of editing, the defined operation becomes the active
definition in the workspace which may replace an existing version of the function.
Monitors, and stop and trace vectors are removed.

Example

vFOO[2]
[2] Re«Rx2
[3] v

Editing Directives

Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

Syntax | Description

v Closes definition mode
(01 Displays the entire operation
[On] Displays the operation starting at line n

[nO] Displays only line n

[An] Deletes line n

[nAam] | Deletes m lines starting at line n

[n] Prompts for input at line n
[n]s Replaces or inserts a statement at line n
[nOm] Edits line n placing the cursor at character position m where an Edit

Control Symbol performs a specific action.

Chapter 2: Defined Functions & Operators 100

Line Numbers

Line numbers are associated with lines in the operation. Initially, numbers are
assigned as consecutive integers, beginning with [0] for the header line. The
number associated with an operation line remains the same for the duration of the
definition mode unless altered by editing directives. Additional lines may be inserted
by decimal numbering. Up to three places of decimal are permitted. On closing
definition mode, operation lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line
or an editing directive. A statement line replaces the existing line (if there is one) or
becomes an additional line in the operation:

VR<A PLUS B
[1] R<«A+B
[2]
Position

The editing directive [n], where n is a line number, causes the editor to prompt for
input at that line number. A statement or another editing directive may be entered.
If a statement is entered, the next line number to be prompted is the previous number
incremented by a unit of the display form of the last decimal digit. Trailing zeros are
not displayed in the fractional part of a line number:

(2] [0.8]
[0.8] A MONADIC OR DYADIC +
[0.9] A A «> OPTIONAL ARGUMENT

[1]

The editing directive [n]s, where n is a line number and s is a statement, causes the
statement to replace the current contents of line n, or to insert line n if there is none:

[1] [0] R<{A} PLUS B
[1]

Delete

The editing directive [An], where n is a line number, causes the statement line to be
deleted. The form [nAm], where n is a line number and m is a positive integer,
causes m consecutive statement lines starting from line number n to be deleted.

Chapter 2: Defined Functions & Operators 101

Edit

The editing directive [n[dm], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m{th}
character on a new line for editing. The response is taken to be edit control symbols
selected from:

/ to delete the character immediately above the symbol.

lto9 to insert from 1 to 9 spaces immediately prior to the character above
the digit.

AtoZ to insert multiples of 5 spaces immediately prior to the character above

the letter, where A =5, B =10, C = 15 and so forth.

to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then re-display the
line for further editing with the text inserted and any preceding
deletions or space insertions also effected.

to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then complete the
edit of the line with the text inserted and any preceding deletions or
space insertions also effected.

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if
there are only deletion or space insertion symbols, the statement line is re-displayed
with characters deleted and spaces inserted as specified. The cursor is placed at the
first inserted space position or at the end of the line if none. Characters may be
added to the line which is then interpreted as seen.

The line number may be edited.

Examples
(1] [107]
[1] R<A+B

,>(0=0NC'A")pi<ILC ¢
[1] >(0=[ONC'A"'")p1<[JLC ¢ R<«A+B

.0>END
[2] R<B
[3] END:
(4]

The form [n[O0] causes the line number n to be displayed and the cursor to be
positioned at the end of the displayed line, omitting the edit phase.

Chapter 2: Defined Functions & Operators 102

Display

The editing directive [[1] causes the entire operation to be displayed. The form
[On] causes all lines from line number n to be displayed. The form [n[] causes
only line number n to be displayed:

[4] [o0]

[0] R<{A} PLUS B
[0]

[0] (03

(0] R<{A} PLUS B
[0.1] A MONADIC OR DYADIC +
[1] >(0=(NC'A")p1+[LC ¢ R«A+B ¢-END

[2] R<B
[3] "END:
[4]

Close Definition Mode

The editing directive V causes definition mode to be closed. The new definition of
the operation becomes the active version in the workspace. If the name in the
operation header (which may or may not be the name used to enter definition mode)
refers to a pendent operation, the editor issues the message warning pendent
operation before exiting. The new definition becomes the active version, but the
original one will continue to be referenced until the operation completes or is cleared
from the state indicator.

If the name in the operation header is the name of a visible variable or label, the
editor reports defn error and remains in definition mode. It is then necessary to
edit the header line or quit.

If the header line is changed such that it is syntactically incorrect, the system reports
defn error, and re-displays the line leaving the cursor beyond the end of the text
on the line. Backspace/linefeed editing may be used to alter or cancel the change:

[3] [o0O] - display line 0
[0] R<«{A} PLUS B
[0] R<{A} PLUS B:G;H - put syntax error in line O
defn error
[0] R«<{A} PLUS B:G;H - line redisplayed

;G;H - backspace/linefeed editing
[1]

Chapter 2: Defined Functions & Operators 103

Local names may be repeated. However, the line editor reports warning messages as
follows:

1. If a name is repeated in the header line, the system reports "warning duplicate
name" immediately.

2. If a label has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

1. If a name is repeated in the header line, the system reports "warning duplicate
name" immediately.

2. If a label has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

Improper syntax in expressions within statement lines of the function is not detected
by the system editor with the following exceptions:

« [f the number of opening parentheses in each entire expression does not equal
the number of closing parentheses, the system reports "warning unmatched
parentheses", but accepts the line.

« If the number of opening brackets in each entire expression does not equal the
number of closing brackets, the system reports "warning unmatched brackets",
but accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other
syntactical errors in statement lines will remain undetected until the operation is
executed.

Example

(4] R<(A[31)=2)£sEXP, 'x2
warning unmatched parentheses
warning unmatched brackets

(5]

Note that there is an imbalance in the number of quotes. This will result in a
SYNTAX ERROR when this operation is executed.

Quit Definition Mode

The user may quit definition mode by typing the INTERRUPT character. The active
version of the operation (if any) remains unchanged.

Chapter 2: Defined Functions & Operators 104

Dfns & Dops

A dfnn (dop)! is an alternative function definition style suitable for defining small to
medium sized functions. It bridges the gap between operator expressions:
rank<pep and full "header style" definitions such as:

V rslt«larg func rarg;local...

In its simplest form, a dfn is an APL expression enclosed in curly braces { },
possibly including the special characters o and w to represent the left and right
arguments of the function respectively. For example:

{(+/w)+pw} 1 2 3 4 A Arithmetic Mean (Average)
2.5

3 {wx+a} 64 A ath root
"

dfns can be named in the normal fashion:

mean+<{(+/w)+pw}
mean (2 3)(4 5)

2.5 4.5
dfns can be defined and used in any context where an APL function may be found, in
particular:
o In immediate execution mode as in the examples above.
o Within a defined function or operator.
 As the operand of an operator such as each ().
e Within another dfn.

The last point means that it is easy to define nested local functions.

IThe terms dfn and dop refer to a special type of function (or operator) unique to Dyalog. They were
originally named dynamic functions and dynamic operators, later abbreviated to Dfns and Dops or D-
Fns and D-Ops, but all these terms have been dropped in favour of the current ones.

Chapter 2: Defined Functions & Operators 105

Multi-Line Dfns

The single expression which provides the result of the dfn may be preceded by any
number of assignment statements. Each such statement introduces a name which is
local to the function.

For example in the following, the expressions sum<« and num< create local
definitions sum and num.

mean<{ A Arithmetic mean
sum<+/w A Sum of items
num<pw A Number of items
sum<num A Mean
}

An assignment to w is not allowed and will result in an error. For assignment to o,
see Default Left Argument on page 106.

Note that dfns may be commented in the usual way using A.

When the interpreter encounters a local definition, a new local name is created. The
name is shadowed dynamically exactly as if the assignment had been preceded by:
Oshadow name .

It is important to note the distinction between the two types of statement above.
There can be many assignment statements, each introducing a new local definition,
but only a single expression where the result is not assigned. As soon as the
interpreter encounters such an expression, it is evaluated and the result returned
immediately as the result of the function.

For example, in the following,

mean<{ A Arithmetic mean
sum<+/w A Sum of items
num<pw A Number of items
sum, num A Attempt to show sum,num (wrong)!
sum+num A and return result.
}

... as soon as the interpreter encounters the expression sum, num, the function
terminates with the two item result (sum, num) and the following line is not
evaluated.

Chapter 2: Defined Functions & Operators 106

To display arrays to the session from within a dfn, you can use the explicit display
forms [« or [J« as in:

mean<{ A Arithmetic mean
sum<+/w A Sum of items
num<pw A Number of items
[d«sum,num A show sum,num.
sum+num A and return result.
}

Note that local definitions can be used to specify local nested dfns:

rms<{ A Root Mean Square
root<{wx0.5} A V Square root
mean<«{(+/w)+pw} A V Mean
square<{wxw} A V Square
root mean square w

}

Default Left Argument

The special syntax: a<expr is used to give a default value to the left argument if a
dfn is called monadically. For example:

root<«{ A ath root
o<2 A default to sqrt
w* <ol

}

The expression to the right of o« is evaluated only if its dfn is called with no left
argument.

Note that the syntax must be exactly o<, that is, it cannot contain parentheses, and so
on.

o« must be the first tokens at the beginning of an expression.
Ambivalence

The assignment o<+ allows an ambivalent function to call an ambivalent sub-
function. For example in:

foo«{

oL«

o goo w
}

If foo is given a left argument, this is passed to goo. Otherwise, o is assigned + and
the last line is v goo w, which is a monadic call on goo followed by the + (Right)
of the result of goo, which is the same value.

Chapter 2: Defined Functions & Operators 107

The assignment o.<* 0 allows an ambivalent operator to skip the application of an
operand to a missing argument. For example in:

over<{
o<«*0
(a0 o)ww(oo w)

}

If the function derived from over is given a left argument, this argument is
preprocessed by the left operand oo and the result is passed to the right operand ww.
Otherwise, o is assigned *0 and the last line is (000) ww (a0, w), which is a
monadic call on ww followed by not applying a.o. to the result of ww, returning it
unmodified.

The assignment o«w allows a function to act as if the commute operator (<) was
applied to it twice:

sort<{
o<

wlha]

If sort is given a left argument, the right argument is sorted according to the left
argument. Otherwise, o, is assigned w and the last line is w[Aw], which has the right
argument sorted according to itself. This is, therefore, equivalent to sort<«{w

[Aa]l}==or sort<{aldw]}=.

Chapter 2: Defined Functions & Operators 108

Guards

A Guard is a Boolean-single valued expression followed on the right by a
example:

0
o

. For

w: A Right arg simple scalar
A Left arg negative

Al

o m

The guard is followed by a single APL expression: the result of the function.
w20: wx0.5 A Square root if non-negative.

A dfn may contain any number of guarded expressions each on a separate line (or
collected on the same line separated by diamonds). Guards are evaluated in turn until
one of them yields a 1. The corresponding expression to the right of the guard is then
evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default
result of the function. For example:

sign<{
w>0: '+ve' A Positive
w=0: 'zero' A zero
‘-ve' A Negative (Default)
}

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which terminates
the function) could never be executed and would therefore be redundant.

See also Error-Guards on page 110.

Shy Result

Dfns are usually 'pure' functions that take arguments and return explicit results.
Occasionally, however, the main purpose of the function might be a side-effect such
as the display of information in the session, or the updating of a file, and the value of
a result, a secondary consideration. In such circumstances, you might want to make
the result 'shy', so that it is discarded unless the calling context requires it. This can
be achieved by assigning a dummy variable after a (true) guard:

Append w to file a.

tie number for file,

new component number,
untie file,

comp number, shy result.

log«{
tie«o [Ifstie O
cno«w [Ifappend tie
tie<Jfuntie tie
1:rslt«cno

DDO®XDO®DDOD®DDO

Chapter 2: Defined Functions & Operators 109

Lexical Name Scope

When an inner (nested) dfn refers to a name, the interpreter searches for it by looking
outwards through enclosing dfns, rather than searching back along the state indicator.
This regime, which is more appropriate for nested functions, is said to employ lexical
scope instead of APL's usual dynamic scope. This distinction becomes apparent only
if a call is made to a function defined at an outer level. For the more usual inward
calls, the two systems are indistinguishable.

For example, in the following function, variable type is defined both within

whi ch itself and within the inner function fn1. When fn1 calls outward to fn2
and fn2 refers to type, it finds the outer one (with value ' Lexical ') rather than
the one defined in fni:

which<«{
type«'lexical'

fni<{
type«'dynamic'
fn2 w

}

fn2«{
type w

fnl w
}

which'scope'
lexical scope

Chapter 2: Defined Functions & Operators 110

Error-Guards

An error-guard is (an expression that evaluates to) a vector of error numbers (see
APL Error Messages on page 248), followed by the digraph: : :, followed by an
expression, the body of the guard, to be evaluated as the result of the function. For
example:

11 5 :: wx0 A Trap DOMAIN and LENGTH errors.

In common with : Trap and JTRAP, error numbers 0 and 1000 are catch-alls for
synchronous errors and interrupts respectively.

When an error is generated, the system searches dynamically through the calling
functions for an error-guard that matches the error. If one is found, the execution
environment is unwound to its state immediately prior to the error-guard's execution
and the body of the error-guard is evaluated as the result of the function. This means
that, during evaluation of the body, the guard is no longer in effect and so the danger
of a hang caused by an infinite "trap loop", is avoided.

Notice that you can provide "cascading" error trapping in the following way:

O::try_2nd
O::try_1st
expr

In this case, if expr generates an error, its immediately preceding: O: : catches it
and evaluates try_1st leaving the remaining error-guard in scope. If try_1st
fails, the environment is unwound once again and try_2nd is evaluated, this time
with no error-guards in scope.

See also Guards on page 108.

Chapter 2: Defined Functions & Operators 111

Examples:

Open returns a handle for a component file. If the exclusive tie fails, it attempts a
share-tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is
returned.

open<{ A Handle for component file w.
::0 A Fails:: return 0 handle.
22::w [JFCREATE O A FILE NAME:: create new one.
24 25::w [JFSTIE O A FILE TIED:: try share tie.
A

w OFTIE O Attempt to open file.
}
An error in di v causes it to be called recursively with improved arguments.
div<{ A Tolerant division:: a+0 - o.
o<1 A default numerator.
5::1v/Vta w A LENGTH:: stretch to fit.
11::0 V w+w=0 A DOMAIN:: increase divisor.
otw A attempt division.
}

Notice that some arguments may cause div to recur twice:

6 4 2 div 3 2

> 6 4 2 div320
> 6 4 2 div 3 21
> 2 22

The final example shows the unwinding of the local environment before the error-
guard's body is evaluated. Local name trap is set to describe the domain of its
following error-guard. When an error occurs, the environment is unwound to expose
trap's statically correct value.

add<{
trap«'domain' o 11::trap
trap«'length' ¢ 5::trap
o+

}

2 add 3 A Addition succeeds

2 add 'three' A DOMAIN ERROR generated.
domain

2 3 add 4+ 5 6 A LENGTH ERROR generated.
length

Chapter 2: Defined Functions & Operators 112

Note:

Following the setting of an error-guard, subsequent function calls will disable tail call
optimisation:

{
22::'Oops!"’ A this error-guard means that
tie«w Oftie O
subfn tie A ... tail call not optimised
}

One way to maintain the tail call optimisation in the presence of an error-guard is to
isolate it within an inner function:

{
tie«{
22::0 A error-guard local to inner fn
w Oftie 0O
tw
tie=0:"'Oops!"’
subfn tie A ... so this is a tail call

Chapter 2: Defined Functions & Operators 113

Dops

The operator equivalent of a dfn is distinguished by the presence of either of the
compound symbols oo, or ww anywhere in its definition.

The syntax of a dop is:

e monadic—o (oo op) w
e dyadic— o (a0 op ww) w

where oo and ww are the left and right operands (functions or arrays) respectively,
and o and w are the arguments of the derived function.

Example

The following monadic each operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original argument.
This can deliver a performance improvement over the primitive each (") operator if
the operand function is costly and the argument contains a significant number of
duplicate elements. Note however, that if the operand function causes side effects, the
operation of dop and primitive versions will be different.

each<«{ A Fast each:
shp«pw A Shape and
vec<,w A ... ravel of arg.
nub«uvec A Vector of unique elements.
res<«aa nub A Result for unique elts.
idx«<nubivec A Indices of arg in nub
shppidx> cres A distribute result.

}

The dyadic e | se operator applies its left (else right) operand to its right argument
depending on its left argument.

else«{
o: 0o W A True: apply Left operand
ww W A Else, .. Right
}
01 [elsel™ 2.5 A Try both false and true.

Chapter 2: Defined Functions & Operators 114

Recursion

A recursive dfn can refer to itself using its name explicitly, but because we allow
unnamed functions, we also need a special symbol for implicit self-reference: 'V ".
For example:

fact«{ A Factorial w.
w<l: 1 A Small w, finished,
wxV w-1 A Otherwise recur.

}

Implicit self-reference using 'V' has the further advantage that it incurs less
interpretative overhead and is therefore quicker. Tail calls using 'V ' are particularly
efficient.

Recursive dops refer to their derived functions, that is the operator bound with its
operand(s) using V or the operator itself using the compound symbol: VV. The first
form of self reference is by far the more frequently used.

pow<{ A Function power.
0=0:w A Apply function operand o times.
(a-1)V 0ot w A 00 OO GO ... W
}
Example

The following example shows a rather contrived use of the second form of (operator)
self reference. The exp operator composes its function operand with itself on each
recursive call. This gives the effect of an exponential application of the original
operand function:

exp<{ A Exponential fn application.
0=0:00 w A Apply operand 2xa times.
(o-1)oacao VV w A (adeaa)e(...) ... w
succ«{1l+w} A Successor (increment).
10 succ exp O
1024
Example
vpow+{ A Function power.
[1] a=0:w A Apply function operand a times.
[2] (0=1)V ool w A oo oo oo ... W
[3] }

v
4+ ® pow 5000
~0.2720968003

Chapter 2: Defined Functions & Operators 115

Example: Pythagorean triples

The following sequence shows an example of combining dfns and dops in an attempt
to find Pythagorean triples: (3 4 5)(5 12 13) ...

sqrt«{wx0.5} A Square root.
sqrt 9 16 25
3 45
hyp«<{sqrt+/>wx2} A Hypoteneuse of
triangle.

hyp(3 &) (4% 5)(5 12)
5 6.403124237 13

intge{w=lw} A Whole number?

intg 2.5 3 4.5

010
pyth<{intg hyp w} A Pythagorean pair?
pyth(3 &) (4% 9)(5 12)

101
pairs<{,iw w} A Pairs of numbers 1..w.
pairs 3

11 12 13 21 22 23 31 32 33
filter«{(oo w)/w} A Op: w filtered by aa.

pyth filter pairs 12 A Pythagorean pairs 1..12
34+ 43 512 68 86 912 125 129

So far, so good, but we have some duplicates: (6 8) is just double (3 4).

rpm<{ A Relatively prime?
w=0:a=1 A C.f. Euclid's gcd.
wV wla

Y A Note the /~

rpm(2 4)(3 4)(6 8)(16 27)
0101

rpm filter pyth filter pairs 20
34+ 43 512 815 12 5 15 8

Chapter 2: Defined Functions & Operators 116

We can use an operator to combine the tests:

and<«{ A Lazy parallel 'And'.
mask<«ao w A Left predicate
selects...
mask\ww mask/w A args for right
predicate.
}

pyth and rpm filter pairs 20
34+ 43 512 815 12 5 15 8

Better, but we still have some duplicates: (3 4) (4 3)

less«{</>w}
less(3 4)(4 3)
10

less and pyth and rpm filter pairs 40
34+ 512 724 8 15 9 40 12 35 20 21

And finally, as promised, triples:

{w,hyp w}"less and pyth and rpm filter pairs 35
3 45 512 13 7 24 25 8 15 17 12 35 37 20 21 29

A Larger Example

Function tokens uses nested local dfns to split an APL expression into its
constituent tokens. Note that all calls on the inner functions: Lex, acc, and the
unnamed dfn in each token case, are tail calls. In fact, the only stack calls are those
on function: al |, and the unnamed function: {wv~1¢w}, within the "Char literal"
case.

Chapter 2: Defined Functions & Operators

117

tokens<«{

alph<A,0A,"'_aA',26t1740AV
all«<{+/*\aew}
acc<{(o,t/w)lex>t/w}
lex<{

O=pw:o ¢ hd<«tw

hd="' ':of{
size«w all'
0 acc size w

}w

hdealph:a{
size«w all alph,dD
0 acc size w

tw

hde'0: ' :a{
size«w all hd,alph
0 acc size w

tw
hd="'"'"'":0{

size<t/"\{wv 1dw}#\h

0 acc size w

}w
hde[D, ' ™' :a{

size«w all 0OD,'.7E'

0 acc size w

}w

hd='a':0 acc(pw)w
o acc 1 w

}
(0pe' ') lex,w

Alphabet for names.
No. of leading aew.
Accumulate tokens.

A Next char else done.

A White Space.

A Name

A System Name/Keyword

A Char literal

d=w

A Numeric Lliteral

A Comment
A Single char token.

display tokens'xtok«sizetsrce A Next token'

e F===

[xtok]|

===

Fo==L

Lex of APL src line.

Chapter 2: Defined Functions & Operators 118

Tail Calls

A novel feature of the implementation of dfns is the way in which tail calls are
optimised.

When a dfn calls a sub-function, the result of the call may or may not be modified by
the calling function before being returned. A call where the result is passed back
immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because the
result of fact is the result of the whole expression, whereas the second call isn't
because the result is subsequently multiplied by w.

(oxw)fact w-1 A Tail call on fact.
wxfact w-1 A Embedded call on fact.

Tail calls occur frequently in dfns, and the interpreter optimises them by re-using the
current stack frame instead of creating a new one. This gives a significant saving in
both time and workspace usage. It is easy to check whether a call is a tail call by
tracing it. An embedded call will pop up a new trace window for the called function,
whereas a tail call will re-use the current one.

Using tail calls can improve code performance considerably, although at first the
technique might appear obscure. A simple way to think of a tail call is as a branch
with arguments. The tail call, in effect, branches to the first line of the function after
installing new values for w and a.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps; possibly in a different
order depending on whether we want to test at the "top" or the "bottom" of the loop.

Initialise loop control variable(s). A init

Test loop control variable. A test

Process body of loop. A proc

Modify loop control variable for next iteration. A mod
Branch to step 2. A jump

Dk wh =

For example, in classical APL you might find the following:

V value«limit loop value A init
[1] top:»(OCT>value-limit)/0 A test
[2] value«Next value A proc, mod
[3] ~top A jump

\'4

Chapter 2: Defined Functions & Operators 119

Control structures help us to package these steps:

vV value<«limit loop value A init
[1] :While [OCT<value-limit A test
2 value«<Next value A proc, mod
[3] :EndWhile A jump

v

Using tail calls:

loop«{n init
OCT>o-w:w A test
o V Next w A proc, mod, jump

}

Restrictions

Dfns need not return a result. However even a non-result-returning expression
will terminate the function, so you can't, for example, call a non-result-
returning function from the middle of a dfn.

You can trace a dfn only if it is defined on more than one line. Otherwise it is
executed atomically in the same way as an execute (¢) expression. This
deliberate restriction is intended to avoid the confusion caused by tracing a
line and seeing nothing change on the screen.

dfns do not currently support [JCS which, if used, generates a NONCE

ERROR.

[OSHADOW ignores dfns when looking down the stack for a traditional function
(tradfn) in which to make a new local name.

dfns do not support control structures or branch.

dfns do not support modified assignment such as X plus<10 where X is an
array and p lus is a function. In this example, both X and p Lus would be
assigned the value 10.

[OMONITOR does not apply to dfns and dops.

Supplied Workspaces

You can find many samples of dfns and dops in utility workspace dfns.dws in the
ws sub-directory.

Additional examples are in workspaces: min.dws, max.dws, tube.dws and
eval.dws.

Chapter 2: Defined Functions & Operators 120

Chapter 3: Object Oriented Programming 121

Chapter 3:

Object Oriented Programming

Introducing Classes

A Class is a blueprint from which one or more Instances of the Class can be created
(instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to together
as Members) which are defined within the body of the class script or are inherited
from other Classes. This version of Dyalog APL does not support Events although it
is intended that these will be supported in a future release. However, Classes that are
derived from .NET types may generate events using 4 [INQ.

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new
versions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a
class can have Shared members which can be used without first creating an instance.

Class Names

Class names must adhere to the general rules for naming APL objects, and in
addition should not conflict with the name of a .NET Type that is defined in any of
the .NET Namespaces on the search path specified by JUSING.

Chapter 3: Object Oriented Programming 122

Defining Classes

A Class is defined by a script that may be entered and changed using the editor. A
class script may also be constructed from a vector of character vectors, and fixed
using [JF IX.

A class script begins with a : Class statement and ends with a :EndClass
statement.

For example, using the editor:

JCLEAR
clear ws
JED oAnimal

[an edit window opens containing the following skeleton Class script ...]

:Class Animal
tEndClass

[the user edits and fixes the Class script]

JCLASSES
Animal

[ONCc'Animal'
9.4

Editing Classes

Between the : Class and : EndClass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may
not add or alter functions by editing them independently and you may not add
variables by assignment or remove objects with [JEX.

When you re-fix a Class Script using the Editor or with [JF I X, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in
its entirety.

Note:

Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so
forth that are created by actions external to the class.

Chapter 3: Object Oriented Programming 123

For example, if X is not a public member of the class MyClass, then the following
expression will insert a variable X into the namespace which surrounds the class:

MyClass.X«99

The namespace is analogous to the namespace associated with a GUI object and will
be re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

For further information, see Changing Scripted Objects Dynamically on page 176.

Inheritance

If you want a Class to derive from another Class, you simply add the name of that
Class to the : Class statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

:Class CLASS2: CLASS1
:EndClass

Note that CLASS1 is referred to as the Base Class of CLASS?2.

If a Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the
Class hierarchy. Note that Private members are not subject to inheritance.

Warning: When a class is fixed, it keeps a reference (a pointer) to its base class. If
the global name of the base class is expunged, the derived class will still have the
base class reference, and the base class will therefore be kept alive in the workspace.
The derived class will be fully functional, but attempts to edit it will fail when it
attempts to locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the o/d and invisible
version of the base class. Only when the derived class is re-fixed, will the new base
class be detected.

If you edit, re-fix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or re-fixing the
derived class(es) after the base class has been substituted.

Copying Classes

See Programming Reference Guide: Copy System Command.

Chapter 3: Object Oriented Programming 124

Classes that derive from .NET Types

You may define a Class that derives from any of the NET Types by specifying the
name of the NET Type and including a : USING statement that provides a path to
the .NET Assembly in which the NET Type is located.

Example

:Class APLGreg: GregorianCalendar
:Using System.Globalization

:EndClass

Classes that derive from the Dyalog GUI

You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives from a Po L y object, the
Class specification would be:

:Class Duck: 'Poly'
:EndClass

The Base Constructor for such a Class is the JWC system function.

Instances

A Class is generally used as a blueprint or model from which one or more Instances
of the Class are constructed. Note however that a class can have Shared members
which can be used directly without first creating an instance.

You create an instance of a Class using the [INEW system function which is monadic.

The 1-or 2-item argument to [INEW contains a reference to the Class and, optionally,
arguments for its Constructor function.

When [INEW executes, it creates a regular APL namespace to contain the Instance,
and within that it creates an Instance space, which is populated with any Instance
Fields defined by the class (with default values if specified), and pointers to the
Instance Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to [JNEW. If INEW was called without Constructor
arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish
variables in the instance namespace.

Chapter 3: Object Oriented Programming 125

The result of JNEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

Constructors

A Constructor is a special function defined in the Class script that is to be run when
an Instance of the Class is created by [ONEW. Typically, the job of a Constructor is to
initialise the new Instance in some way.

A Constructor is identified by a : Implements Constructor statement. This
statement may appear anywhere in the body of the function after the function header.
The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, with a : Access
Pub L i c statement, because like all Class members, Constructors default to being
Private. Private Constructors currently have no use or purpose, but it is intended that
they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only
one) may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the
Constructor argument. See Constructor Overloading on page 126 for details.

The only way a Constructor function should be invoked is by [ONEW. See Base_
Constructors on page 133 for further details. If you attempt to call a Constructor
function from outside its Class, it will cause a SYNTAX ERROR. A Constructor
function should not call another Constructor function within the same Class, although
it will not generate an error. This would cause the Base Constructor to be called
twice, with unpredictable consequences.

When [ONEW is executed with a 2-item argument, the appropriate monadic
Constructor is called with the second item of the [INEW argument.

The niladic (default) Constructor is called when [INEW is executed with a 1-item
argument, a Class reference alone, or whenever APL needs to create a fill item for
the Class.

Note that [INEW first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Chapter 3: Object Oriented Programming 126

Example

The DomesticParrot Class defines a Constructor function egg that initialises the
Instance by storing its name (supplied as the 219 item of the argument to INEW) in a
Public Field called Name.

:Class DomesticParrot: Parrot
:Field Public Name

V egg name
:Implements Constructor
tAccess Public
Name<name

v

:Endéiéss A DomesticParrot

pol<[INEW DomesticParrot 'Polly’
pol .Name
Polly

Constructor Overloading

NamelList header syntax is used to define different versions of a Constructor each
with a different number of parameters, referred to as its signature. See Namelists on
page 69 for details. The Clover Class illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a
constructor with the same number of arguments exists (remembering that 0
arguments will match a niladic Constructor), it is called. If there is no exact match,
and there is a Constructor with a general signature (an un-parenthesised right
argument), it is called. If no suitable constructor is found, a LENGTH ERROR is
reported.

There may be one and only one constructor with a particular signature.

The only way a Constructor function should be invoked is by [INEW. See Base_
Constructors on page 133 for further details. If you attempt to call a Constructor
function from outside its Class, it will cause a SYNTAX ERROR. A Constructor
function should not call another Constructor function within the same Class, although
it will not generate an error. This would cause the Base Constructor to be called
twice, with unpredictable consequences.

Chapter 3: Object Oriented Programming

127

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument
Makel 1-item vector
Make?2 2-item vector
Make3 3-item vector
MakeO No argument
MakeAny Any array accepted

Clover Class Example

:Class Clover A Constructor Overload Example

:Field Public Con

vV MakeO

:Access Public

:Implements Constructor

make O

vV Makel(arg)

:Access Public

:Implements Constructor

make arg

vV Make2(argl arg2)
tAccess Public

:Implements Constructor

make argl arg2

v Make3(arg!l arg2 arg3)

:Access Public

:Implements Constructor

make argl arg2 arg3

vV MakeAny args

:Access Public

:Implements Constructor

make args
v
V make args

Con<«(pargs)(22[0SI)args

\'
:EndClass A Clover

In the following examples, the Make function (see Clover Class for details) displays:

<shape of argument> <name of Constructor

called><argument>
(see function make)

Chapter 3: Object Oriented Programming 128

Creating a new Instance of Clover with a 1-element vector as the Constructor
argument, causes the system to choose the Make 1 Constructor. Note that, although
the argument to Make1 is a 1-element vector, this is disclosed as the list of
arguments is unpacked into the (single) variable argi.

(ONEW Clover(,1)).Con
Makel 1

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make2, or Make3 respectively.

(ONEW Clover(1 2)).Con
2 Make2 1 2

(ONEW Clover(1 2 3)).Con
3 Make3d 1 2 3

Creating an Instance with any other Constructor argument causes the system to
choose MakeAny.

(ONEW Clover(110)).Con
10 MakeAny 1 2 3 456 7 8 9 10
(ONEW Clover(2 2pi4)).Con
2 2 MakeAny 1 2
3 4

Note that a scalar argument will call MakeAny and not Makel.

(ONEW Clover 1).Con
MakeAny 1

and finally, creating an Instance without a Constructor argument causes the system to
choose MakeO.

(ONEW Clover).Con
MakeO O

Chapter 3: Object Oriented Programming 129

Niladic (Default) Constructors

A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when [ONEW is
invoked without arguments and when APL needs a fill item.

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor
Species<«spec

v default
tAccess Public Instance
:Implements Constructor
Species<«'Default Bird'

V R«Speak
:Access Public
R<'Tweet, tweet!'
\'

:EndClass A Bird

The niladic Constructor (in this example, the function defaul t) is invoked when
ONEW is called without Constructor arguments. In this case, the Instance created is no
different to one created by the monadic Constructor egg, except that the value of the
Species Fieldissetto ‘Default Bird'.

Birdy<«[INEW Bird
Birdy.Species
Default Bird

The niladic Constructor is also used when APL needs to make a fill item of the
Class. For example, in the expression (3tBirdy), APL has to create two fill items
of Birdy (one for each of the elements required to pad the array to length 3) and
will in fact call the niladic Constructor twice.

In the following statement:

TweetyPie«3210tBirdy

Chapter 3: Object Oriented Programming 130

The 101 (temporarily) creates a 10-element array comprising the single entity
Birdy padded with 9 fill-elements of Class Bird. To obtain the 9 fill-elements,
APL calls the niladic Constructor 9 times, one for each separate prototypical Instance
that it is required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?

In APL it is natural to use arrays of Instances. For example, consider the following
example.

:Class Cheese
:Field Public Name<«''
:Field Public Strength<«&
V make2(name strength)
:Access Public
:Implements Constructor
Name Strength<«name strength

V makel name
tAccess Public
:Implements Constructor
Name Strength<name 1

V make_excuse
:Access Public
:Implements Constructor
O«'The cat ate the last one!'
\'
:EndClass

We might create an array of Instances of the Cheese Class as follows:

cdata<«('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses<«{[JNEW Cheese w} ‘cdata

Suppose we want a range of medium-strength cheese for our cheese board.

board«(cheeses.Strength<3)/cheeses
board.Name
Caephilly Mild Cheddar

But look what happens when we try to select really strong cheese:

board«(cheeses.Strength>5)/cheeses
board.Name
The cat ate the last one!

Chapter 3: Object Oriented Programming 131

Note that this message is not the result of the expression, but was explicitly displayed
by the make_excuse function. The clue to this behaviour is the shape of board; it
is empty!

pboard
0

When a reference is made to an empty array of Instances (strictly speaking, a
reference that requires a prototype), APL creates a new Instance by calling the
niladic (default) Constructor, uses the new Instance to satisfy the reference, and then
discards it. Hence, in this example, the reference:

board.Name
caused APL to run the niladic Constructor make_excuse, which displayed:
The cat ate the last one!

Notice that the behaviour of empty arrays of Instances is modelled VERY closely
after the behaviour of empty arrays in general. In particular, the Class designer is
given the task of deciding what the types of the members of the prototype are.

Empty Arrays of Instances: How?

To cater for the need to handle empty arrays of Instances as easily as non-empty
arrays, a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs
2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:
o ifit is a reference is to a Field, the value of the Field is obtained
o if it is a reference is to a Property, the PropertyGet function is run
o ifit is a reference is to a Method, the method is executed
o if it is an assignment, the assignment is performed or the PropertySet
function is run
4. if it is a reference, the result of step 3 is used to generate an empty result array
with a suitable prototype by the application of the function {Opcw} to it
5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

Chapter 3: Object Oriented Programming 132

Example

:Class Bird
:Field Public Species

V egg spec
tAccess Public Instance
:Implements Constructor
ODF Species<+spec

v

vV default
:Access Public Instance
:Implements Constructor
ODF Species«'Default Bird'
#.DISPLAY Species

\'4

V R<«Speak
tAccess Public
#.DISPLAY R«'Tweet, Tweet, Tweet'

\'4

:EndClass A Bird

First, we can create an empty array of Instances of Bird using Op.
Empty<0p[NEW Bird 'Robin'

A reference to Empty.Species causes APL to create a new Instance and invoke
the niladic Constructor defaul t. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

DISPLAY Empty.Species

My

|Default Bird|

APL then retrieves the value of Species ('Default Bird"), applies the
function {Opcw} to it and returns this as the result of the expression.

A reference to Empty.Speak causes APL to create a new Instance and invoke the
niladic Constructor defaul t. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

Chapter 3: Object Oriented Programming 133

DISPLAY Empty.Speak

APL then invokes function Speak which displays ' Tweet, Tweet, Tweet'
and returns this as the result of the function.

APL then applies the function {Opcw} to it and returns this as the result of the
expression.

Base Constructors

Constructors in a Class hierarchy are not inherited in the same way as other
members. However, there is a mechanism for all the Classes in the Class inheritance
tree to participate in the initialisation of an Instance.

Every Constructor function contains a : Implements Constructor statement
which may appear anywhere in the function body. The statement may optionally be
followed by the : Base control word and an arbitrary expression.

The statement:
:Implements Constructor :Base expr

calls @ monadic Constructor in the Base Class. The choice of Constructor depends
upon the rank and shape of the result of expr (see Constructor Overloading on page
126 for details).

Whereas, the statement:

:Implements Constructor
or

:Implements Constructor :Base
calls the niladic Constructor in the Base Class.

Note that during the instantiation of an Instance, these calls potentially take place in
every Class in the Class hierarchy.

Chapter 3: Object Oriented Programming 134

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails with a LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails
with a LENGTH ERROR. Note that it is therefore impossible for APL to instantiate a
fill item or process a reference to an empty array for such a Class or any Class that is
based upon it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way
a Constructor function may be invoked is by [ONEW. The fundamental reason for
these restrictions is that there must be one and only one call on the Base Constructor
when a new Instance is instantiated. If Constructor functions were allowed to call one
another, there would be several calls on the Base Constructor. Similarly, if a
Constructor could be called directly it would potentially duplicate the Base
Constructor call.

Chapter 3: Object Oriented Programming 135

Niladic Example

In the following example, DomesticParrot is derived from Parrot which is
derived from B1ird. They all share the Field Desc (inherited from B i rd). Each of
the 3 Classes has its own niladic Constructor called eggO.

:Class Bird
:Field Public Desc
vV egg0
:Access Public
:Implements Constructor
Desc«'Bird'
\'
:EndClass A Bird

:Class Parrot: Bird
vV egg0
:Access Public
:Implements Constructor
Desc,«'~Parrot'
\'
:EndClass A Parrot

:Class DomesticParrot: Parrot
vV egg0
:Access Public
:Implements Constructor
Desc,«'->DomesticParrot'
\'
:EndClass A DomesticParrot

(ONEW DomesticParrot).Desc
Bird-Parrot-DomesticParrot

Explanation

[INEW creates the new instance and runs the niladic Constructor
DomesticParrot.egg0. As soon as the line:

:Implements Constructor

is encountered, [JNEW calls the niladic constructor in the Base Class Parrot.egg0
Parrot.eggO starts to execute and as soon as the line:

:Implements Constructor

is encountered, [JNEW calls the niladic constructor in the Base Class Bird.egg0.
When the line:

:Implements Constructor

Chapter 3: Object Oriented Programming 136

is encountered, [INEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the state indicator unwinds ...

Bird.egg0 executes |[Desc<«'Bird"''
Parrot.egg0 executes |[Desc,«'~>Parrot'’
DomesticParrot.egg0 execute Desc,<«'»DomesticParrot'"'

Monadic Example

In the following example, DomesticParrot is derived from Parrot which is
derived from B i rd. They all share the Field Species (inherited from B i rd) but
only a DomesticParrot has a Field Name. Each of the 3 Classes has its own
Constructor called egg.

:Class Bird
:Field Public Species
V egg spec
tAccess Public Instance
:Implements Constructor
Species<«spec
v

:EndClass A Bird

:Class Parrot: Bird
V egg species
:Access Public Instance
:Implements Constructor :Base 'Parrot: ',species
v

:EndClass A Parrot

:Class DomesticParrot: Parrot
:Field Public Name
V egg(name species)
tAccess Public Instance
:Implements Constructor :Base species
[ODF Name<name
\'4

:Endéiéss A DomesticParrot

pol<«[DJNEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

Chapter 3: Object Oriented Programming 137

Explanation

[ONEW creates the new instance and runs the Constructor DomesticParrot.egg.
The egg header splits the argument into two items name and species. As soon as
the line:

:Implements Constructor :Base species

is encountered, [JNEW calls the Base Class constructor Parrot . egg, passing it the
result of the expression to the right, which in this case is simply the value in
species.

Parrot.egg starts to execute and as soon as the line:
:Implements Constructor :Base 'Parrot: ',species

is encountered, [INEW calls izs Base Class constructor Bird.egg, passing it the
result of the expression to the right, which in this case is the character vector
'Parrot: ' catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.
At this point, the state indicator would be:

)SI
[#.[Instance of DomesticParrot]] #.Bird.egg[3]x
[constructor]
:base
[#.[Instance of DomesticParrot]] #.Parrot.egg[2]
[constructor]
:base
[#.[Instance of DomesticParrot]] #.DomesticParrot.egg[2]
[constructor]

Bird.egg then returns to Parrot.egg which returns to
DomesticParrot.egg.

Finally, DomesticParrot.eggl[3] is executed, which establishes Field Name
and the Display Format ((JDF) for the instance.

Destructors

A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated with
an Instance.

An Instance of a Class is destroyed when:

o The Instance is expunged using JEX or) ERASE.
e A function, in which the Instance is localised, exits.

Chapter 3: Object Oriented Programming 138

But be aware that a destructor will also be called if:

o The Instance is re-assigned (see below)

o The result of [INEW is not assigned (the instance gets created then immediately
destroyed).

o APL creates (and then destroys) a new Instance as a result of a reference to a
member of an empty Instance. The destructor is called after APL has obtained
the appropriate value from the instance and no longer needs it.

o The constructor function fails. Note that the Instance is actually created before
the constructor is run (inside it), and if the constructor fails, the fledgling
Instance is discarded. Note too that this means a destructor may need to deal
with a partially constructed instance, so the code may need to check that
resources were actually acquired, before releasing them.

¢ On the execution of)CLEAR,)LOAD, [JLOAD,)OFF or [JOFF.

Warning: a Destructor may be executed on any thread.

Note that an Instance of a Class only disappears when the last reference to it
disappears. For example, the sequence:

I1<[INEW MyClass
I2«I1
JERASE I

will not cause the Instance of MyClass to disappear because it is still referenced by
I2.

A Destructor is identified by the statement : Imp lements Destructor which
must appear immediately after the function header in the Class script.

:Class Parrot

v kill
:Implements Destructor
‘This Parrot is dead'
\'4

:Endéiéss A Parrot

pol<«[INEW Parrot 'Scarlet Macaw'
)JERASE pol
This Parrot is dead

Note that reassignment to po L causes the Instance referenced by pol to be
destroyed and the Destructor invoked:

pol<[INEW Parrot 'Scarlet Macaw'
pol<[INEW Parrot 'Scarlet Macaw'
This Parrot is dead

Chapter 3: Object Oriented Programming 139

If a Class inherits from another Class, the Destructor in its Base Class is
automatically called after the Destructor in the Class itself.

So, if we have a Class structure: DomesticParrot => Parrot => Bird
containing the following Destructors:

:Class DomesticParrot: Parrot

v kill
:Implements Destructor
'This ', (sOTHIS),' is dead'
v

:EndClass A DomesticParrot

:Class Parrot: Bird

v kill
:Implements Destructor
‘This Parrot is dead'
v

:Endéiéss A Parrot

:Class Bird

v kill
:Implements Destructor
'This Bird is dead'

v

:Endéiéss A Bird

Destroying an Instance of DomesticParrot will run the Destructors in
DomesticParrot, Parrot and Bird and in that order.

pol<[INEW DomesticParrot

JCLEAR
This Polly is dead
This Parrot is dead
This Bird is dead
clear ws

Chapter 3: Object Oriented Programming 140

Class Members

A Class may contain Methods, Fields and Properties (commonly referred to together
as Members) which are defined within the body of the Class script or are inherited
from other Classes.

Methods are regular APL defined functions, but with some special characteristics that
control how they are called and where they are executed. Dfns may not be used as
Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to
set the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all
sorts of operations. In particular, the value of a Property is not stored in the Property
and may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class,
whereas Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared
Members are common to all Instances and Shared Members may be referenced
directly on the Class itself.

Chapter 3: Object Oriented Programming 141

Fields

A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However,
Fields differ from variables in that they possess characteristics that control their
accessibility.

A Field may be declared anywhere in a Class script by a : F i el d statement. This
specifies:

the name of the Field

whether the Field is Public or Private

whether the Field is Instance or Shared

whether or not the Field is ReadOnly

the .NET type for the Field when the Class is exported as a .NET Assembly.
optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See Trigger Fields on page 144 for
details.

Public Fields

A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class DomesticParrot has a Name Field which is defined to be Public and
Instance (by default).

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

\'

:Endéiéss A DomesticParrot
The Name field is initialised by the Class constructor.

pet<[INEW DomesticParrot'Polly"’
pet.Name
Polly

Chapter 3: Object Oriented Programming 142

The Name field may also be modified directly:

pet.Name<¢pet.Name
pet.Name
ylloP

Initialising Fields

A Field may be assigned an initial value. This can be specified by an arbitrary
expression that is executed when the Class is fixed by the Editor or by [JF IX.

:Class DomesticParrot: Parrot
:Field Public Name
:Field Public Talks<«1

V egg nm
:Access Public
:Implements Constructor
Name<nm

\'

:EndClass A DomesticParrot
Field Tal ks will be initialised to 1 in every instance of the Class.

pet<«[JNEW DomesticParrot 'Dicky'’

pet.Talks
1

pet.Name
Dicky

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.

See also: Shared Fields on page 143.

Chapter 3: Object Oriented Programming 143

Private Fields

A Private Field may only be referenced by code running inside the Class or an
Instance of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 156) has a Private Instance Field named tie
that is used to store the file tie number in each Instance of the Class.

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
tAccess Public Instance
:Trap O
tie«filename OFTIE O
:Else
tie«filename [JFCREATE O
:EndTrap
ODOF filename, '(Component File)'
\'4

As the field is declared to be Private, it is not accessible from outside an Instance of
the Class, but is only visible to code running inside.

F1<[NEW ComponentFile 'testt'
Fl.tie

VALUE ERROR
Fil.tie

A

Shared Fields

If a Field is declared to be Shared, it has the same value for every Instance of the
Class. Moreover, the Field may be accessed from the Class itself; an Instance is not
required.

The following example establishes a Shared Field called Months that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to initialise
a Field.

:Class Example

:Using System.Globalization

:Field Public Shared ReadOnly Months<«121 ([JNEW
DateTimeFormatInfo).AbbreviatedMonthNames
:EndClass A Example

Chapter 3: Object Oriented Programming 144

A Shared Field is not only accessible from an instance...

EG<[INEW Example
EG.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

... but also, directly from the Class itself.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Notice that in this case it is necessary to insert a : Us i ng statement (or the
equivalent assignment to [JUSING) in order to specify the NET search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the
Session:

JUSING+'System.Globalization'
12+ (0ONEW DateTimeFormatInfo).AbbreviatedMonthNames
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Trigger Fields

A field may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to change
the Display Form. This can be achieved by making the Field a Trigger as illustrated
by the following example.

Notice that the Trigger function is invoked both by assignments made within the
Class (as in the assignment in ctor) and those made from outside the Instance.

Chapter 3: Object Oriented Programming 145

:Class MyClass
:Field Public Name
:Field Public Country«'England’
V ctor nm
tAccess Public
:Implements Constructor

Name<«nm
v
v format

:Implements Trigger Name,Country

[ODF 'My name is ',Name,' and I live in ',Country
v

tEndClass A MyClass

me<«[JNEW MyClass 'Pete’
me
My name is Pete and I live in England

me.Country<«'Greece'
me
My name is Pete and I live in Greece

me .Name<«'Kostas'
me
My name is Kostas and I live in Greece

Methods

Methods are implemented as regular defined functions, but with some special
attributes that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method
begins with a line that contains a Vv, followed by a valid APL defined function
header. The method definition is terminated by a closing V.

The behaviour of a Method is defined by an : Access control statement.
Public or Private
Methods may be defined to be Private (the default) or Public.

A Private method may only be invoked by another function that is running inside the
Class namespace or inside an Instance namespace. The name of a Private method is
not visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared
Methods may be defined to be Instance (the default) or Shared.

Chapter 3: Object Oriented Programming 146

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not have
direct access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods
Instance Methods may be declared with : Access Overridable.

A Method declared as being Overridable is replaced in situ (that is, within its own
Class) by a Method of the same name that is defined in a higher Class which itself is
declared with the Override keyword. See Superseding Base Class Methods on page
148.

Shared Methods

A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not have
direct access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about the
current Instance, so may be declared as Shared.

:Class Parrot:Bird

V R<«<Speak times
:Access Public Shared
R<stimespc'Squark!"’

v

:EndClass A Parrot

wild<[ONEW Parrot
wild.Speak 2
Squark! Squark!

Note that Parrot.Speak may be executed directly from the Class and does not in
fact require an Instance.

Parrot.Speak 3
Squark! Squark! Squark!

Chapter 3: Object Oriented Programming 147

Instance Methods

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

Class DomesticParrot has a Speak method defined to be Public and Instance.
Where Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that DomesticParrot.Speak supersedes the inherited
Parrot.Speak.

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

\'

V R«<Speak times

tAccess Public Instance

R<cName, ', ',Name

R«tR,timespc' Who''s a pretty boy, then!'
\'4

:EndClass A DomesticParrot

pet<«[INEW DomesticParrot'Polly’
pet.Speak 3

Polly, Polly

Who's a pretty boy, then!

Who's a pretty boy, then!

Who's a pretty boy, then!

bil<[JNEW DomesticParrot'Billy'
bil.Speak 1

Billy, Billy

Who's a pretty boy, then!

Chapter 3: Object Oriented Programming 148

Superseding Base Class Methods

Normally, a Method defined in a higher Class supersedes the Method of the same
name that is defined in its Base Class, but only for calls made from above or within
the higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class. This behaviour can be altered using the Overridable and Override key words
in the : Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base
Class method in the Base Class, by providing a method which is marked Override.
The typical use of this is to replace code in the Base Class which handles an event,
with a method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs
in the base class:

V ErrorHandler
[1] :Access Public Overridable
[2] 0«+0oM

\'

In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

V ErrorHandler;TN
[1] :Access Public Override
[2] O« t0DM
[3] TN«'ErrorLog'0FSTIE O
[4] (ODM OFAPPEND TN
[5] OOFUNTIE TN

\'

If the derived class had a function which was not marked Override, then function in
the derived class which called ErrorHand ler would call the function as defined in
the derived class, but if a function in the base class called ErrorHandler, it would
still see the base class version of this function. With Override specified, the new
function supersedes the function as seen by code in the base class. Note that different
derived classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

Chapter 3: Object Oriented Programming 149

Properties

A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a
Property, you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined
to allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

o A Simple Property is one whose value is accessed (by APL) in its entirety and
re-assigned (by APL) in its entirety.

e A Numbered Property behaves like an array (conceptually a vector) which is
only ever partially accessed and set (one element at a time) via indices. The
Numbered Property is designed to allow APL to perform selections and
structural operations on the Property.

o A Keyed Property is similar to a Numbered Property except that its elements
are accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered
Properties.

If Instance My Inst has a Simple Property Sprop and a Numbered Property
Nprop, the expressions

X«MyInst.SProp
X«MyInst.SProp[2]

both cause APL to call the PropertyGet function to retrieve the entire value of
Sprop. The second statement subsequently uses indexing to extract just the second
element of the value.

Whereas, the expression:
X+<MyInst.NProp[2]

causes APL to call the PropertyGet function with an additional argument which
specifies that only the second element of the Property is required. Moreover, the
expression:

X«MyInst.NProp

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a :Property ... :EndProperty section in a Class
Script.

Chapter 3: Object Oriented Programming 150

Within the body of a Property Section there may be:

e one or more : Access statements which must appear first in the body of the
Property.

 a single PropertyGet function.

 asingle PropertySet function

 a single PropertyShape function

Simple Instance Properties

A Simple Instance Property is one whose value is accessed (by APL) in its entirety
and re-assigned (by APL) in its entirety. The following examples are taken from the

ComponentFile Class (see page 156).
The Simple Property Count returns the number of components on a file.

:Property Count
tAccess Public Instance
V r<get
r< - 1+2o[JFSIZE tie
v
:EndProperty A Count

F1<[JNEW ComponentFile 'testi'
F1.Append'Hello World'

1
F1.Count
1
F1.Append 42
2
F1.Count
2

Because there is no set function defined, the Property is read-only and attempting to
change it causes SYNTAX ERROR.

F1.Count«99
SYNTAX ERROR
F1.Count<«99

A

Chapter 3: Object Oriented Programming 151

The Access Property has both get and set functions which are used, in this
simple example, to get and set the component file access matrix.

:Property Access
tAccess Public Instance
V r<get
r«<[FRDAC tie
v
V set am;mat;OK
mat«am.NewValue
:Trap O
OK<+(2=ppmat)”(3=25pmat)**/,mat=mat
tElse
OK<«0
:EndTrap
'bad arg'OSIGNAL(~OK)/11
mat [FSTAC tie
v
:EndProperty A Access

Note that the set function must be monadic. Its argument, supplied by APL, will be
an Instance of PropertyArguments. This is an internal Class whose NewValue
field contains the value that was assigned to the Property.

Note too that the set function does not have to accept the new value that has been
assigned. The function may validate the value reject or accept it (as in this example),
or perform whatever processing is appropriate.

F1+<[INEW ComponentFile 'test1l'
pF1.Access

F1.Access«3 3p28 2105 16385 0 2073 16385 31 "1 O
F1.Access
28 2105 16385
0 2073 16385
31 -1 0

F1.Access<«'junk'
bad arg

Fl.Access«'junk'
A

F1.Access«1 2p10
bad arg
F1.Access«l 2p10

A

Chapter 3: Object Oriented Programming 152

Simple Shared Properties

The ComponentFile Class (see page 156) specifies a Simple Shared Property named
F i les which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also
possible to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as
a whole, and which is not specific to any a particular Instance.

:Property Files
:Access Public Shared
V r<get
r<dFLIB""'
v
:EndProperty

Note that JFLIB (invoked by the Files get function) does not report the names
of tied files.

F1<[ONEW ComponentFile 'test1l'

OeEX'F1'

F2<[INEW ComponentFile 'test2'

F2.Files A NB OFLIB does not report tied files
test!

OeEX'F2'

Note that a Shared Property may be accessed from the Class itself. It is not necessary
to create an Instance first.

ComponentFile.Files
testl
test2

Numbered Properties

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property,
APL first calls its PropertyShape function which returns the dimensions of the
Property. Note that the shape of the result of this function determines the rank of the
Property.

Chapter 3: Object Oriented Programming

153

If the expression uses indexing, APL checks that the index or indices are within the
bounds of these dimensions, and then calls the PropertyGet or PropertySet function.
If the expression specifies a single index, APL calls the PropertyGet or PropertySet

function once. If the expression specifies multiple indices, APL calls the function

successively.

If the expression references or assigns the entire Property (without indexing) APL

generates a set of indices for every element of the Property and calls the PropertyGet
or PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number of
elements or an INDEX ERROR if an index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an
argument of type PropertyArguments.

Example

The ComponentFile Class (see page 156) specifies a Numbered Property named

Component which represents the contents of a specified component on the file.

:Property Numbered Component
tAccess Public Instance

v

v
v

v
v

v

r<shape
r<-1+2>[FSIZE tie

r<get arg
r<[FREAD tie arg.Indexers

set arg
arg.NewValue [OFREPLACE tie,arg.Indexers

:EndProperty
F1<[INEW ComponentFile 'testl'

F1.Append”(15)xcil

12345

F1.Count

F1.Component[4]

L 8 12 16

4>F1.Component

L 8 12 16

(ct

L 8 12 16

3)[F1.Component
36 9 12

Chapter 3: Object Oriented Programming 154

Referencing a Numbered Property in its entirety causes APL to call the get function
successively for every element.

F1.Component
1234 2468 36912 4 8 12 16 5 10 15 20

((c4 3)[F1.Component)«'Hello' 'World'

F1.Component[3]
World

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component[6]
INDEX ERROR
F1.Component[6]
A

F1.Component[1;2]
RANK ERROR
F1.Component[1;2]
A

Chapter 3: Object Oriented Programming 155

The Default Property

A single Numbered Property may be identified as the Default Property for the Class.
If a Class has a Default Property, indexing with the [] primitive function and [. ..]
indexing may be applied to the Property directly via a reference to the Class or
Instance.

The Numbered Property example of the ComponentFile Class (see page 156) can be
extended by adding the control word Default to the : Property statement for the
Component Property.

Indexing may now be applied directly to the Instance F 1. In essence, F1[n] is
simply shorthand for F1.Component[n] and n[JF1 is shorthand for
n[JF1.Component

:Property Numbered Default Component
:Access Public Instance
V r<shape
r< 1+2o[JFSIZE tie
v
V r«get arg
r<(JFREAD tie arg.Indexers
v
V set arg
arg.NewValue [JFREPLACE tie,arg.Indexers
v
:EndProperty

F1<[INEW ComponentFile 'testl'
F1.Append”(15)xcih

12345
F1.Count
5
FI[4]
4 8 12 16
(et 3)0F1

4L 8 12 16 3 6 9 12
((c4 3)[JF1)«'Hello' 'World'
F1[3]

World

Note however that this feature applies only to indexing.

4oF 1
DOMAIN ERROR
4oF 1

A

Chapter 3: Object Oriented Programming 156

ComponentFile Class

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
:Access Public Instance
:Trap O
tie<filename [OFTIE O
tElse
tie«filename [FCREATE O
:EndTrap
ODF filename,'(Component File)'

V Close
tAccess Public Instance
[OFUNTIE tie

V r«<Append data
:Access Public Instance
r<data [JFAPPEND tie

V Replace(comp data)
:Access Public Instance
data [OFREPLACE tie,comp

\'

:Property Count
:Access Public Instance
V r<get
r<-1+2o[JFSIZE tie
v
:EndProperty A Count

Chapter 3: Object Oriented Programming 157

Component File Class Example (continued)

:Property Access
tAccess Public Instance
V r<get arg
r<[0FRDAC tie
v
V set am;mat;OK
mat<am.NewValue
:Trap O
OK<«(2=ppmat)~(3=2>pmat)”**/,mat=[mat
:Else
OK<0
:EndTrap
'bad arg'OSIGNAL(~OK)/11
mat [JFSTAC tie
v
:EndProperty A Access

:Property Files
:Access Public Shared
V r<get
r<dFLIB""'
v
:EndProperty

:Property Numbered Default Component
tAccess Public Instance
V r<shape args
r< - 1+2o[JFSIZE tie
v
V r«get arg
r<c[JFREAD tie,arg.Indexers
v
V set arg
(oarg.NewValue)FREPLACE tie,arg.Indexers
v
:EndProperty

V Delete filestie
:Access Public Shared
tie«file OFTIE O
file OJFERASE tie
\'
:EndClass A Class ComponentFile

Chapter 3: Object Oriented Programming 158

Keyed Properties

A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not
restricted to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required.
APL does not attempt to validate or resolve the specified indices in any way, so does
not require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed
assignment) and the array returned by the get function (for an indexed reference). If
the rank or shape of these arrays fails to conform to the rank or shape of the indices,
APL will issue a RANK ERROR or LENGTH ERROR.

Note too that indices may be elided. If KProp is a Keyed Property of Instance I1,
the following expressions are all valid.

I1.KProp

I1.KProp[J«10
I1.KProp[;]«10
I1.KProp['One' 'Two';]«10
I1.KProp[;'One' 'Two']<«10

When APL calls a monadic get or a set function, it supplies an argument of type
PropertyArguments, which identifies which dimensions and indices were specified.
See PropertyArguments Class on page 191.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse?2 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed
Property named Values. The following expressions show how it might be used.

SA1<[INEW Sparse2
SA1.Values[c'Widgets';c'Jan']«100
SAl.Values[c'Widgets';c'Jan']
100
SAl.Values['Widgets' 'Grommets';'Jan' 'Mar'
'Oct']«10%x2 3p16
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
10 20 30
40 50 60
SA1l.Values[c'Widgets';'Jan' 'Oct']
10 30
SA1.Values['Grommets' 'Widgets';c'Oct']
60
30

Chapter 3: Object Oriented Programming 159

Sparse2 Class Example

:Class Sparse2 A 2D Sparse Array
:Field Private keys
:Field Private values
vV make
tAccess Public
:Implements Constructor
keys«opcll [)
values<@
v
:Property Keyed Values
tAccess Public Instance
V ve<get arg:k
k«arg.Indexers
OSIGNAL (2#pk) /4
k<«fixkeys k
v<(values,0)[keystk]

V set args;news;k;vin
v<arg.NewValue
k«arg.Indexers
OSIGNAL (2#pk) /4
k<fixkeys k
v<(pk) (p*x(21=p,v))v
OSIGNAL ((pk)#pv)/5
k ve,"k v
:If v/new<~kekeys
values,<«new/v
keys,«new/k
k v/=<c~new

:EndIf

:If O<pk
values[keysik]«v

:EndIf

v
:EndProperty

V k«<fixkeys k
k«(22="k){, (c*¥a)w} 'k
ke«s(o.{>,/c"a w})/k

v
:EndClass A 2D Sparse Array

Internally, Sparse?2 maintains a list of keys and a list of values which are initialised
to empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys
(indices) in arg.Indexer and values in arg.NewValue. The function updates
the values of existing keys, and adds new keys and their values to the internal lists.

Chapter 3: Object Oriented Programming 160

When an indexed reference is made, the get function receives a list of keys (indices)
in arg.Indexer. The function uses these keys to retrieve the corresponding
values, inserting Os for non-existent keys.

Note that in the expression:
SAl1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

the structure of arg.Indexer is:

Chapter 3: Object Oriented Programming 161

Example

A second example of a Keyed Property is provided by the KeyedF i Le Class which
is based upon the ComponentFile Class (see page 156) used previously.

:Class KeyedFile: ComponentFile
:Field Public Keys
OML<0

vV Open filename

:Implements Constructor :Base filename

tAccess Public Instance

:If Count>0
Keys<{>w>[BASE.Component} " tCount

:Else
Keys«Opc'

tEndIf

v

:Property Keyed Component
:Access Public Instance
V r<get args;keys;sink
keys<2arg.Indexers
(OSIGNAL(~*/keyseKeys)/3
r<{2>w>[JBASE.Component} 'Keystikeys
v
vV set arg;new;keys;vals
vals<«arg.NewValue
keys«oarg.Indexers
OSIGNAL((p,keys)#p,vals)/5
:If v/new<~keyseKeys
sink<Append {8t (cnew)/ keys vals
Keys,<new/keys
keys vals/=<«c~new
:EndIf
:If O<p,keys
Replace &t (Keystikeys) ({&tkeys vals)
:EndIf

v
:EndProperty

:EndClass A Class KeyedFfile

Chapter 3: Object Oriented Programming 162

K1<[INEW KeyedFile 'ktest'
K1.Count

K1.Component[c'Pete']«42
K1.Count

K1.Component['John' 'Geoff'J]«(110)(3 4pt12)
K1.Count

K1.Component['Geoff' 'Pete']

3 4 42

8

11 12

K1.Component['Pete’' 'Morten']«(3 4p'eo')(113)
K1.Count

O U1 =
OO N
~

t orten' 'Pete' 'John']

M
3 cooo 1 23 456789 10
3

0000

o ne

P [
1
2

)

mponen
12 1
22 1

[N
N -

ooo0o0

Interfaces

An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific
implementation; this is provided by each of the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents
a protocol that an application must follow in order to manipulate a Class in a
particular way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own individual
version of Compare. An application can then be written that sorts Instances of any
Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its
:Class statement, and defines a corresponding set of the Methods and Properties that
are declared in the Interface.

To implement a Method, a function defined in the Class must include a
:Implements Method statement that maps it to the corresponding Method
defined in the Interface:

:Implements Method <InterfaceName.MethodName>

Chapter 3: Object Oriented Programming 163

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The
function name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions)
must exactly match that of the property described in the Interface. The Property
name, however, need not be the same as that described in the Interface.

Penguin Class Example

The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance.

:Interface FishBehaviour

V R«<Swim A Returns description of swimming capability
\'

:EndInterface A FishBehaviour

:Interface BirdBehaviour

V R«Fly A Returns description of flying capability

g R«Lay A Returns description of egg-laying behaviour
g R«Sing A Returns description of bird-song
YEndInterFace A BirdBehaviour

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
V R<NoCanFly
:Implements Method BirdBehaviour.Fly
R«'Although I am a bird, I cannot fly'

V R«LayOneEgg
:Implements Method BirdBehaviour.Lay
R«'I lay one egg every year'

v

V R<«<Croak
:Implements Method BirdBehaviour.Sing
R«<'Croak, Croak!'

v

V R«Dive
:Implements Method FishBehaviour.Swim
R«'I can dive and swim like a fish'

v

:EndClass A Penguin

Chapter 3: Object Oriented Programming 164

In this case, the Penguin Class derives from Animal but additionally supports the
BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members
from both.

Pingo<«[ONEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [JCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [ICLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [ICLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [CLASS Pingo).Sing
Croak, Croak!

Including Namespaces in Classes

A Class may import methods from one or more plain Namespaces. This allows
several Classes to share a common set of methods, and provides a degree of multiple
inheritance.

To import methods from a Namespace NS, the Class Script must include a statement:
:Include NS

When the Class is fixed by the editor or by [JF I X, all the defined functions and
operators in Namespace NS are included as methods in the Class. The functions and
operators which are brought in as methods from the namespace NS are treated exactly
as if the source of each function/operator had been included in the class script at the
point of the : Inc lude statement. For example, if a function contains

:Signature or : Access statements, these will be taken into account. Note that
such declarations have no effect on a function/operator which is in an ordinary
namespace.

Dfns and dops in NS are also included in the Class but as Private members, because
dfns and dops may not contain : Signature or : Access statements. Variables
and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in NS
are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in NS.

Chapter 3: Object Oriented Programming 165

Conversely, functions in NS will supersede members of the same name that are
inherited from the Base Class, so the precedence is:

Class supersedes
Included Namespace, supersedes
Base Class

Any number of Namespaces may be included in a Class and the : Inc lude
statements may occur anywhere in the Class script. However, for the sake of
readability, it is recommended that you have : Inc lude statements at the top, given
that any definitions in the script will supersede included functions and operators.

For information on copying classes that reference namespaces in this way, see
Programming Reference Guide: Copy System Command.

Example

In this example, Class Pengui n inherits from Animal and includes functions from
the plain Namespaces BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass A Penguin

Namespace BirdStuf f contains 2 functions, both declared as Public methods.

:Namespace BirdStuff
V R«Fly
tAccess Public Instance
R<'Fly, Fly ...'
v
V R<«<Lay
tAccess Public Instance
R<'Lay, Lay '
v
:EndNamespace A BirdStuff

Chapter 3: Object Oriented Programming 166

Namespace FishStuff contains a single function, also declared as a Public
method.

:Namespace FishStuff
V R«Swim
:Access Public Instance
R«'Swim, Swim ...'
v
:EndNamespace A FishStuff

Pingo<«[ONEW Penguin
Pingo.Swim

Swim, Swim ...
Pingo.Lay

Lay, Lay ...

Pingo.Fly

Fly, Fly

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the BirdStuff.F ly method with Penguin.Fly. We can
hide BirdStuff.F ly with a Private method in Pengui n that does nothing. For
example:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V Fly A Override BirdStuff.Fly
\'4

:EndClass A Penguin

Pingo<«[ONEW Penguin
Pingo.Fly
VALUE ERROR
Pingo.Fly
A

or we can supersede it with a different Public method, as follows:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V R«Fly A Override BirdStuff.Fly
tAccess Public Instance
R«'Sadly, I cannot fly'
\'4
:EndClass A Penguin

Pingo<[INEW Penguin
Pingo.Fly
Sadly, I cannot fly

Chapter 3: Object Oriented Programming 167

Nested Classes

It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Pub Lic. This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Pub lic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

GolfService Example Class

:Class GolfService
:Using System

:Field Private GOLFILE<«'' @A Name of Golf data file
:Field Private GOLFID«0 A Tie number Golf data file

:Class GolfCourse
:Field Public Code<«™1
:Field Public Name<«''

V ctor args
:Implements Constructor
tAccess Public Instance
Code Name<args
[ODF Name,'(',(%Code),"')"
v

:EndClass

Chapter 3: Object Oriented Programming 168

:Class Slot
:Field Public Time
:Field Public Players

V ctorl t
:Implements Constructor
:Access Public Instance
Time<«t
Players«QOpc''

vV ctor2 (t pl)
:Implements Constructor
:Access Public Instance
Time Players<«t pl

vV format
:Implements Trigger Players
ODFsTime Players
v
:EndClass

:Class Booking
:Field Public OK
:Field Public Course
:Field Public TeeTime
:Field Public Message

V ctor args
:Implements Constructor
tAccess Public Instance
OK Course TeeTime Message<«args
v
v format
:Implements Trigger OK,Message
(DFsCourse TeeTime(20OK$Message 'OK')
v
:EndClass

Chapter 3: Object Oriented Programming 169

:Class StartingSheet
:Field Public OK
:Field Public Course
:Field Public Date
:Field Public Slots<«[NULL
:Field Public Message

V ctor args
:Implements Constructor
:Access Public Instance
OK Course Date«args
v
v format
:Implements Trigger OK,Message
[DFs2 1p(sCourse Date)(t3 'Slots)
v
:EndClass

V ctor file
:Implements Constructor
:Access Public Instance
GOLFILE<«file
OFUNTIE(((YOFNAMES)~" ')1cGOLFILE)>=[JFNUMS,O0

:Trap 22
GOLFID«GOLFILE OFTIE O
:Else
InitFile
:EndTrap
\'4
vV dtor

:Implements Destructor
OFUNTIE GOLFID
v

V InitFile;COURSECODES ;COURSES; INDEX;I
:Access Public
:If GOLFID#0
GOLFILE [FERASE GOLFID
tEndIf
GOLFID«GOLFILE [FCREATE O
COURSECODES«1 2 3
COURSES«'St Andrews' 'Hindhead' 'Basingstoke’
INDEX<(pCOURSES) p0
COURSECODES COURSES INDEX [OFAPPEND GOLFID
:For I :In 1pCOURSES
INDEX[I]«®& & [OFAPPEND 1
:EndFor
COURSECODES COURSES INDEX [JFREPLACE GOLFID 1

Chapter 3: Object Oriented Programming 170

V R<GetCourses; COURSECODES ; COURSES; INDEX
:Access Public
COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
R<{[ONEW GolfCourse w} {§t+COURSECODES COURSES
\'4

V R<GetStartingSheet
ARGS ; CODE ; COURSE ;s DATE ; COURSECODES

s COURSES ; INDEX ; COURSETI ; IDN
sDATES ; COMPS ; IDATE; TEETIMES
sGOLFERS;IT

:Access Public

CODE DATE<«ARGS

COURSECODES COURSES INDEX<[JFREAD GOLFID 1

COURSEI+COURSECODES1CODE

COURSE<[INEW GolfCourse(CODE(COURSEI>COURSES,c'"))

R<[JNEW StartingSheet(0 COURSE DATE)

:If COURSEI>pCOURSECODES

R.Message<«'Invalid course code'

:Return
tEndIf
IDN<«2 [ONQ'.' 'DateToIDN',DATE.(Year Month Day)
DATES COMPS<[JFREAD GOLFID,COURSEI-INDEX
IDATE<«DATEStIDN

:If IDATE>pDATES
R.Message<«'No Starting Sheet available'
:Return
tEndIf
TEETIMES GOLFERS+«[JFREAD GOLFID,IDATE>COMPS
T«DateTime.New (cDATE.(Year Month Day)), 4[1]
24 60 1TTEETIMES
R.Slots<{[ONEW Slot w} 'T,ec " {GOLFERS
R.OK<«1

Chapter 3: Object Oriented Programming 171

V R«MakeBooking ARGS;CODE ;COURSE;SLOT;TEETIME

If

s COURSECODES ; COURSES ; INDEX
sCOURSEI;IDN;DATES;COMPS;IDATE
sTEETIMES ; GOLFERS;OLD; COMP ; HOURS
sMINUTES;NEAREST; TIME ; NAMES s FREE
sFREETIMES;I;J;DIFF
tAccess Public
A If GimmeNearest is 0, tries for specified time
GimmeNearest is 1, gets nearest time
CODE TEETIME NEAREST<«3tARGS
COURSECODES COURSES INDEX<[JFREAD GOLFID 1
COURSEI+~COURSECODES1CODE
COURSE<«[INEW GolfCourse(CODE (COURSEI>COURSES,c'"))
SLOT<[INEW Slot TEETIME
R<[NEW Booking(0 COURSE SLOT'")
:If COURSEI>pCOURSECODES
R.Message<«'Invalid course code'
:Return
tEndIf
:If TEETIME.Now>TEETIME
R.Message<«'Requested tee-time is in the past'
:Return
tEndIf
:If TEETIME>TEETIME.Now.AddDays 30
R.Message<«'Requested tee-time is more than 30
days from now'
:Return
:EndIf
IDN«2 [ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS<[JFREAD GOLFID,COURSEI-INDEX
IDATE«DATES1IDN
:If IDATE>pDATES
TEETIMES« (24 6017 0)+10x~1+11+8x6
GOLFERS«((pTEETIMES),4)pc''llowed per tee time

:If 0=0LD+>(DATES<2 [INQ'.' 'DateToIDN',3t0TS)/
1pDATES
COMP<(TEETIMES GOLFERS)FAPPEND GOLFID
DATES,<IDN

COMPS ,«COMP

(DATES COMPS)[FREPLACE GOLFID,COURSEI-INDEX
:Else

DATES[OLD]<«IDN

(TEETIMES GOLFERS)[FREPLACE GOLFID,

COMP«+0QOLD>COMPS

DATES COMPS [JFREPLACE GOLFID,COURSEI-INDEX

tEndIf

Chapter 3: Object Oriented Programming 172

v

tElse
COMP<+IDATE>COMPS
TEETIMES GOLFERS<«[JFREAD GOLFID COMP
tEndIf
HOURS MINUTES«TEETIME. (Hour Minute)
NAMES<«(3VARGS)~8""'
TIME«<24 60LHOURS MINUTES
TIME«10x[0.5+TIME+10
:If ~NEAREST
I«TEETIMES1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p GOLFERS[I;]
R.Message<«'Not available'
:Return
tEndIf
:Else
:If ~v/FREE«(pNAMES)<>,/+/0=p GOLFERS
R.Message«'Not available'
:Return
tEndIf
FREETIMES«(FREExTEETIMES)+32767x~FREE
DIFF«|FREETIMES-TIME
I<DIFF1|/DIFF
tEndIf
J<(>,/0=p"GOLFERS[I;])/14
GOLFERS[I; (pNAMES)tJ]«NAMES
(TEETIMES GOLFERS)OFREPLACE GOLFID COMP
TEETIME<«DateTime.New TEETIME.(Year Month Day),
3t24 60TI-TEETIMES
SLOT.Time«TEETIME
SLOT.Players+«(>,/0<p "GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)«1l SLOT

:EndClass

Chapter 3: Object Oriented Programming 173

GolfService Example

The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.NET and is one of the samples
distributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

A Class that represents a Golf Course, having Fields Code and

GolfCourse
Name.
A Class that represents a tee-time or match, having Fields
Slot Time and Players. Up to 4 players may play together in a
match.
A Class that represents a reservation for a particular tee-time at
. a particular golf course. This has Fields OK, Course,
Booking

TeeTime and Message. The value of TeeTime is an
Instance of a Slot Class.

A Class that represents a day's starting-sheet at a particular golf
StartingSheet | course. It has Fields OK, Course, Date, Slots, Message.
Slots is an array of Instances of Slot Class.

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method InitF i Le if it doesn't already exist.

G<[INEW GolfService 'F:\HELP11.0\GOLFDATA'
G
#.[Instance of GolfService]

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the
GolfCourse constructor, to obtain the output display shown below.

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

All of the dates and times employ instances of the .NET type System.DateTime, and
the following statements just set up some temporary variables for convenience later.

O«Tomorrow«<([ONEW DateTime(31[TS)).AddDays 1
31/03/2006 00:00:00

O«TomorrowAt7«<Tomorrow.AddHours 7
31/03/2006 07:00:00

Chapter 3: Object Oriented Programming 174

The MakeBooking method takes between 4 and 7 parameters viz.

the code for the golf course at which the reservation is required
the date and time of the reservation

a flag to indicate whether or not the nearest available time will do
a list of up to 4 players who wish to book that time.

« the code for the golf course at which the reservation is required

« the date and time of the reservation

 a flag to indicate whether or not the nearest available time will do
 alist of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, [IDF is used to
make the default display of these Instances meaningful. In this case, the reservation is
successful.

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger OK

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead
(4-player restriction).

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack
OK

However, Pete and Tiger are joined at 7:00 by Dave and Al.

G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave
Al OK

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00...

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

... so his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal
Class StartingSheet for the given course and day.

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00

Chapter 3: Object Oriented Programming 175

Namespace Scripts

A Namespace Script is a script that begins with a : Namespace statement and ends
with a : EndNamespace statement. When a Namespace Script is fixed, it
establishes an entire namespace that may contain other namespaces, functions,
variables and classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the

same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

:Namespace a

d<[INEW a1
e<[INEW bb2

:Class al
V r«foo
:Access Shared Public
r<[ONEW'b1 b2
\'
tEndClass a al

V r<goo
r<al.foo
\'

V r<foo
r<[ONEW'b1 b2
\'

:Namespace b
:Class bl
:EndClass A bl
:Class b2
:Class bb2
:EndClass A bb2
:EndClass A b2
:EndNamespace A b

:EndNamespace A a

Chapter 3: Object Oriented Programming 176

a.d
#.a.[a1]

a.e
#.a.[bb2]

a.foo
#.a.[b1] #.a.[b2]

Note that the names of Classes b1 (a.b.b1)and b2 (a.b.b2) are not visible from
their "uncle" al (a.al).

a.goo
VALUE ERROR
foo[2] r<(NEW'b1 b2

Notice that Classes in a Namespace Script are fixed before other objects (hence the

assignments to d and e are evaluated affer Classes al and bb2 are fixed), although
the order in which Classes themselves are defined is still important if they reference
one another during initialisation.

Changing Scripted Objects Dynamically

The source of a scripted object can only be altered using the Editor, or by refixing it
in its entirety using [JF IX. Dynamic changes to variables, fields and properties, and
calling [JF X to generate functions do not alter the source of a scripted object.

Furthermore, if you introduce new objects of any type (functions, variables, or
classes) into a namespace or a class defined by a script by any means other than
editing the script, then these objects will be lost the next time the script is edited and
fixed.

If you fix a function using [JF X with the same name as a function defined in the
script, this new version will supercede the version defined from the script, although
the version in the script will remain unchanged.

If you edit the function (as opposed to editing the script) the Editor will show the
new version of the function.

If however you edit the script, the Editor will display the original version of the
function embedded in the script.

If you were to edit both the script and the function, the Editor would show the two
different versions of the function as illustrated in the example that follows.

When you fix the script, the version of the function in the script will replace the one
created using [JF X.

Chapter 3: Object Oriented Programming

177

Example
:Namespace ns
v foo
1

v
:EndNamespace
ns.foo
1
ns.0Ofx 'foo' '2'
ns.foo
2

Jed ns.foo ns

£ Editor

= | B) |

File Edit Refactor Window View

ED ns.foo

w

(= [@][]
A A X
[G]é é foo
11 | 2
Unscripted Function Pos: 0/21

L

(= (] s)

A A X

é ; hNamespace ns -
[0]: ¢ v foo I
[11: 1 3
21 L v

i | :EndMamespace il
Mamespace Pos: 0/6,0

Note that the Editor displays the description Unscripted Function in the status
bar of the window showing the new version of foo.

Similarly, if you were to Trace the execution of ns . f oo, the Tracer would display
the current ([JF X'ed) version of f oo, with the same description in its status bar.

Chapter 3: Object Oriented Programming 178

Namespace Script Example

The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named entries, which is simply a vector of
instances of DiaryEntry. These are 2-element vectors containing a NET
DateTime object and a description.

The entries Field is initialised to an empty vector of DiaryEntry instances
which causes the invocation of the default constructor DiaryEntry.MakeO when
Diary is fixed. See Empty Arrays of Instances: Why ? on page 130 for further
explanation.

The entries Field is referenced through the Entry Property, which is defined as
the Default Property. This allows individual entries to be referenced and changed
using indexing on a Diary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is
referenced by the initialisation of the Diaries.entries Field

:Namespace DiaryStuff
:Using System

:Class DiaryEntry
:Field Public When
:Field Public What
vV Make(ymdhm wot)
tAccess Public
:Implements Constructor
When What<«([ONEW DateTime(6t5tymdhm))wot
[ODFsWhen What
\'4
vV MakeO
tAccess Public
:Implements Constructor
When What<[ONULL"'
\'4
:EndClass A DiaryEntry

Chapter 3: Object Oriented Programming 179

:Class Diary
:Field Private entries<«Op[JNEW DiaryEntry
V R«Add(ymdhm wot)
tAccess Public
R<[INEW DiaryEntry(ymdhm wot)
entries,«R

V R«DoingOn ymd;X
:Access Public
X<, (tentries.When.(Year Month Day))*.=3 1p3tymd
R«<X/entries

V R«Remove ymdhm;X
tAccess Public
:If Rev/X«entries.When=[ONEW DateTime(615tymdhm)
entries«(~X)/entries
tEndIf
v
:Property Numbered Default Entry
V R«Shape
R<pentries
v
V R«Get arg
R«arg.Indexers>entries
v
vV Set arg
entries[arg.Indexers]«arg.NewValue
v
:EndProperty
:EndClass A Diary

:EndNamespace

Create a new instance of Diary.
D<[ONEW DiaryStuff.Diary
Add a new entry "meeting with John at 09:00 on April 30th"

D.Add(2006 4 30 9 0) 'Meeting with John'
30/04/2006 09:00:00 Meeting with John

Add another diary entry "Dentist at 10:00 on April 30th™

D.Add(2006 4 30 10 0)'Dentist'’
30/04/2006 10:00:00 Dentist

Chapter 3: Object Oriented Programming 180

One of the benefits of the Namespace Script is that Classes defined within it (which
are typically related) may be used independently, so we can create a stand-alone
instance of DiaryEntry; "Doctor at 11:00"...

Doc<+[INEW DiaryStuff.DiaryEntry((2006 4 30 11
0) 'Doctor')
Doc
30/04/2006 11:00:00 Doctor

... and then use it to replace the second Diary entry with indexing:
D[2]<«Doc
and just to confirm it is there...

D[2]
30/04/2006 11:00:00 Doctor

What am I doing on the 30th?

D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John
30/04/2006 11:00:00 Doctor

Remove the 11:00 appointment...

D.Remove 2006 4 30 11 O
1

and the complete Diary is...

0o
30/04/2006 09:00:00 Meeting with John

Including Script Files in Scripts

A Class or Namespace script in the workspace or in a script file may specify that
other script files are to be loaded prior to the fixing of the script itself. To do so, it
must begin with one or more :Require statements, with the following syntax:

:Require file://[path]/file

If no path is specified, the path is taken to be relative to the current script file or, if
in a workspace script, the current working directory. Note that a leading ' ./ " or
".\"in path is not allowed, to avoid any potential confusion with "current
directory".

:Require is a directive to the Editor (more specifically, to the internal mechanism
that fixes a script as an object in the workspace) and can appear in any script
containing APL code, but must precede all code in the script. : Require is thus not
valid within a function, class, namespace or any other definition.

Chapter 3: Object Oriented Programming 181

The prefix file:// allows for the possibility of a future extension of https://
and ftp://.

In version 19.0 Al : require is a synonym for :Require. This allows the user to
create scripts which can be used in multiple versions of Dyalog; in 14.1 and earlier
SALT parses A ! : requi re statements and loads the appropriate files, in 19.0 it is
the interpreter loads the file named in A! : requi re statements. Dyalog intends to
remove support for the A ! : requi re statement from the interpreter in a future
version. Note that unlike :Require, Al :require can appear within code.

Class Declaration Statements

This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see Function Declaration Statements on page 70.

‘Interface Statement

:Interface <interface name>

;éadlnterface

An Interface is defined by a Script containing skeleton declarations of Properties
and/or Methods. The script must begin with a : Interface Statement and end
witha :EndInterface Statement.

An Interface may not contain Fields.

Properties and Methods defined in an Interface, and the Class functions that
implement the Interface, may not contain :Access Statements.

:Namespace Statement

:Namespace <namespace name>
:EndNamespace

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a : Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of : Namespace and
:EndNamespace statements within the Namespace script.

Classes are defined by pairs of :Class and : EndClass statements within the
Namespace script, and these too may be nested.

Chapter 3: Object Oriented Programming 182

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that
refer to one another where the use of nested classes is inappropriate.

:Class Statement

:Class <class name><:base class name> <,interface
name...>

:Include <namespace>
:EndClass

A class script begins with a : Class statement and ends with a :EndClass
statement. The elements that comprise the : Class statement are as follows:

Element Description

Optionally, specifies the name of the Class, which must

class name .
conform to the rules governing APL names.

base class [Optionally specifies the name of a Class from which this Class
name is derived and whose members this Class inherits.

interface

name The names of one or more Interfaces which this Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
: Inc lude statements. For further details, see Including Namespaces in Classes on

page 164.

Examples:

The following statements define a Class named Pengui n that derives from (is based
upon) a Class named Animal and which supports two Interfaces named
BirdBehaviour and FishBehaviour.

:Class Penguin: Animal,BirdBehaviour,FishBehaviour

;éﬁdClass

Chapter 3: Object Oriented Programming 183

The following statements define a Class named Penguin that derives from (is based
upon) a Class named Animal and includes methods defined in two separate
Namespaces named BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

;éadClass

:Using Statement

:Using <NameSpace[,Assembly]>

This statement specifies a .NET namespace that is to be searched to resolve
unqualified names of .NET types referenced by expressions in the Class.

Element Description

NameSpace |Specifies a NET namespace.

Specifies the Assembly in which NameSpace is located. If the
Assembly is located in the Microsoft. NET installation
directory, you need only specify its name. If not, you must
specify a full or relative pathname.

Assembly

If the Microsoft .NET Framework is installed, the System namespace
inmscorlib.dll is automatically loaded when Dyalog APL starts. To access this
namespace, it is not necessary to specify the name of the Assembly.

When the class is fixed, JUSING is inherited from the surrounding space. Each
:Us i ng statement appends an element to [JUSING, with the exception of :Using
with no argument:

If you omit <Namespace>, this is equivalent to clearing JUSING, which means
that no .NET namespaces will be searched (unless you follow this statement with
additional : Using statements, each of which will append to JUSING).

To set JUSING, to a single empty character vector, which only allows references to
fully qualified names of classes in mscorlib.d11, you must write:

:Using , (note the presence of the comma)
or
:Using ,mscorlib.dll

that is, specify an empty namespace name followed by no assembly, or followed by
the default assembly, which is always loaded.

Chapter 3: Object Oriented Programming 184

-Attribute Statement

:Attribute <Name> [ConstructorArgs]
The :Attribute statement is used to attach .NET Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to
the extra information in attributes to determine how these items can be used.
Attributes are saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor
Example

The following Class has SerializableAttribute and
CLSCompliantAttribute attributes attached to the Class as a whole, and
ObsoleteAttribute attributes attached to Methods foo and goo within it.

:Class c1

tusing System
tattribute SerializableAttribute
tattribute CLSCompliantAttribute 1

v foo(pl p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute
v

vV goo(pl p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

v

:EndClass A ci

When this Class is exported as a .NET Class, the attributes are saved in its metadata.
For example, Visual Studio will warn developers if they make use of a member
which has the ObsoleteAttribute.

Chapter 3: Object Oriented Programming 185

:Access Statement

:Access <Private|Public><Instance|Shared><Overridable>
<Override>
:Access <WebMethod>

The :Access statement is used to specify characteristics for Classes, Properties and
Methods.

Element Description

Specifies whether or not the (nested) Class, Property
Private|Public or Method is accessible from outside the Class or an
Instance of the Class. The defaultis Private.

For a Field, specifies if there is a separate value of the
Field in each Instance of the Class, or if there is only a
single value that is shared between all Instances. For a
Property or Method, specifies whether the code
associated with the Property or Method runs in the
Class or Instance.

Instance|Shared

Applies only to a Method and specifies that the
WebMethod method is exported as a web method. This applies
only to a Class that implements a Web Service.

Applies only to an Instance Method and specifies that
Overridable the Method may be overridden by a Method in a
higher Class. See below.

Applies only to an Instance Method and specifies that
Override the Method overrides the corresponding Overridable
Method defined in the Base Class. See below.

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class.

Chapter 3: Object Oriented Programming 186

However, a Method declared as being Overridab Le is replaced in situ (that is,
within its own Class) by a Method of the same name in a higher Class if that Method
is itself declared with the Override keyword. For further information, see
Superseding Base Class Methods on page 148.

Nested Classes

The : Access statement is also used to control the visibility of one Class that is
defined within another (a nested Class). A Nested Class may be either Private or
Pub lic. Note that the : Access Statement must precede the definition of any Class
contents.

A Pub lic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod

Note that : Access WebMethod is equivalent to:

tAccess Public
:Attribute System.Web.Services.WebMethodAttribute

Chapter 3: Object Oriented Programming 187

:Implements Statement

The : Implements statement identifies the function to be one of the following

types.

:Implements
:Implements
:Implements
:Implements
:Implements

Constructor <[:Base expr]>
Destructor

Method <InterfaceName.MethodName>
Trigger <namel><,name2,name3,...>
Trigger x

Element

Description

Constructor [Specifies that the function is a Class Constructor.

:Base expr

Specifies that the Base Constructor be called with the result
of the expression expr as its argument.

Destructor Specifies that the function is a Class Destructor.

Specifies that the function implements the Method

Method MethodName whose syntax is specified by Interface
InterfaceName.
Identifies the function as a Trigger Function which is
activated by changes to variable namel, name2, and so
Trigger forth.

Trigger * specifies a Global Trigger that is activated by the
assignment of any global variable in the same namespace.

Chapter 3: Object Oriented Programming 188

‘Field Statement

:Field <Private|Public> <Instance|Shared> <ReadOnly>...
FieldName <<« expr>

A :Field statement is a single statement whose elements are as follows:

Element Description

Specifies whether or not the Field is accessible from
Private|Public outside the Class or an Instance of the Class. The
defaultis Private.

Specifies if there is a separate value of the Field in
Instance|Shared [each Instance of the Class, or if there is only a single
value that is shared between all Instances.

If specified, this keyword prevents the value in the

ReadOnly Field from being changed after initialisation.
If specified, this identifies a .Net type for the Field.
Type This type applies only when the Class is exported as a
NET Assembly.
FieldName Specifies the name of the Field (mandatory).
< expr Specifies an initial value for the Field.
Examples:

The following statement defines a Field called Name. It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so
may be accessed (set or retrieved) from outside an Instance.

:Field Public Name

The following statement defines a Field called Months.

:Field Shared ReadOnly Months<«12t ([ONEW
DateTimeFormatInfo)
.AbbreviatedMonthNames

Months is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and
may not be altered after initialisation. Its initial value is calculated by an expression
that obtains the short month names that are appropriate for the current locale using
the .NET Type DateTimeFormatInfo.

Chapter 3: Object Oriented Programming 189

Notes

Note that Fields are initialised when a Class script is fixed by the editor or by OF IX.

If the evaluation of expr causes an error (for example, a VALUE ERROR), an

appropriate message will be displayed in the Status Window and [OF IX will fail with

a DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a value by its
:Field statement.

In the second example above, the expression will only succeed if JUSING is set to
the appropriate path, in this case System.Globalization.

You may not define a Field with the name of one of the permissible keywords (such
as pub L ic). In such cases the Class will not fix and an error message will be
displayed in the Status Window. For example:

error ACO541: a field must have a name " :Field Public
public"

Chapter 3: Object Oriented Programming 190

:Property Section

A Property is defined by a :Property ... :EndProperty section in a Class
Script. The syntax of the :Property Statement, and its optional : Access statement is

as follows:

:Property <Simple|Numbered|Keyed> <Default>

Name<,Name>...

:Access <Private|Public><Instance|Shared>

;éﬁdProperty

Element Description
Specifies the name of the Property by which
it is accessed. Additional Properties, sharing
Name the same PropertyGet and/or PropertySet

functions, and the same access behaviour may
be specified by a comma-separated list of
names.

Simple|Numbered|Keyed

Specifies the type of Property (see below).
The defaultis Simple.

Default

Specifies that this Property acts as the default
property for the Class when indexing is
applied directly to an Instance of the Class.

Private|Public

Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
Private.

Instance|Shared

Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-

assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Chapter 3: Object Oriented Programming 191

Numbered and Keyed Properties are designed to allow APL to perform selections
and structural operations on the Property.

Within the body of a Property Section there may be:

e one or more : Access statements
« a single PropertyGet function.

« a single PropertySet function

 a single PropertyShape function

The three functions are identified by case-independent names Get, Set and Shape.

Errors

When a Class is fixed by the Editor or by [JF IX, APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape
functions within them.

¢ You may not specify a name which is the same as one of the keywords.

o There must be at least a PropertyGet, or a PropertySet or a PropertyShape
function defined.

e You may only define a PropertyShape function if the Property is Numbered.

If anything is wrong, the Class is not fixed and an error message is displayed in the
Status Window. For example:

error ACO545: invalid or empty property declaration
error AC0595: this property type should not implement a
"shape" function

PropertyArguments Class

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:

The name of the property. This is useful when one

ame o . .
N function is handling several properties.

Array containing the new value for the Property or
NewValue for selected element(s) of the property as specified
by Indexers.

A Boolean vector that identifies which dimensions

IndexersSpecified of the Property are to be referenced or assigned.

A vector that identifies the elements of the Property

Indexers .
that are to be referenced or assigned.

Chapter 3: Object Oriented Programming 192

PropertyGet Function R«Get {ipa}

The name of the PropertyGet function must be Ge t, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function.

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result R may be any array. However, for a Keyed Property, R must conform to
the rank and shape specified by ipa.Indexers or be scalar.

If monadic, ipa is an instance of the internal class .

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue is undefined (VALUE ERROR).

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same
length as the rank of the property (as implied by the result of the Shape function)
that identifies a single element of the Property whose value is to be obtained. In this
case, R must be scalar.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with the
same length as the rank of the property (as implied by the result of the Shape
function). A value of 1 means that an indexing array for the corresponding dimension
of the Property was specified, while a value of 0 means that the corresponding
dimension was elided. ipa.Indexers is a vector of the same length containing the
arrays that were specified within the square brackets in the reference expression.
Specifically, ipa.Indexers will contain one fewer elements than, the number of
semi-colon (;) separators. If any index was elided, the corresponding element of
ipa.Indexers is ONULL.

Note:

It is not possible to predict the number of times that a PropertyGet, PropertySet or
PropertyShape function will be called by a particular APL expression, as this depends
upon how that expression is implemented internally. You should therefore not rely on
the number of times that a Get, Set or Shape function is called, and none should have
any side effects on any other APL object

Chapter 3: Object Oriented Programming 193

PropertySet Function Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, skt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.
ipa is an instance of the internal class .

In all cases, ipa.Name contains the name of the Property being referenced and
NewVa lue contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same
length as the rank of the property (as implied by the result of the Shape function)
that identifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with the
same length as the rank of the property (as implied by the result of the Shape
function). A value of 1 means that an indexing array for the corresponding dimension
of the Property was specified, while a value of 0 means that the corresponding
dimension was elided.ipa.Indexers is a vector containing the arrays that were
specified within the square brackets in the assignment expression. Specifically,
ipa.Indexers will contain one fewer elements than, the number of semi-colon (;)
separators. If any index was elided, the corresponding element of ipa.Indexers
is ONULL. However, if the Keyed Property is being assigned in its entirety, without
square-bracket indexing, ipa.Indexers is undefined (VALUE ERROR).

Note:

It is not possible to predict the number of times that a PropertyGet, PropertySet or
PropertyShape function will be called by a particular APL expression, as this depends
upon how that expression is implemented internally. You should therefore not rely on
the number of times that a Get, Set or Shape function is called, and none should have
any side effects on any other APL object

Chapter 3: Object Oriented Programming 194

PropertyShape Function R«Shape {ipa}

The name of the PropertyShape function must be Shape, but is case-independent.
For example, shape, Shape, sHape and SHAPE are all valid names for the
PropertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.
The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class . i pa.Name contains the name
of the Property being referenced and NewValue and Indexers are undefined
(VALUE ERROR).

The result R must be an integer vector or scalar that specifies the rank of the
Property. Each element of R specifies the length of the corresponding dimension of
the Property. Otherwise, the reference or assignment to the Property will fail with
DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices
corresponds to the rank of the Property and that the indices are within the bounds of
its dimensions. If not, the reference or assignment to the Property will fail with RANK
ERROR or LENGTH ERROR.

Note:

It is not possible to predict the number of times that a PropertyGet, PropertySet or
PropertyShape function will be called by a particular APL expression, as this depends
upon how that expression is implemented internally. You should therefore not rely on
the number of times that a Get, Set or Shape function is called, and none should have
any side effects on any other APL object

Chapter 4: Threads and Triggers 195

Chapter 4

Threads and Triggers

Threads

Dyalog APL supports multithreading - the ability to run more than one APL
expression at the same time.

This unique capability allows you to perform background processing, such as
printing, database retrieval, database update, calculations, and so forth while at the
same time perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.
A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the primitive operator
Spawn: & or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling
environment is paused, pendent on the return of the called function. With an
asynchronous call, both calling environment and called function proceed to execute
concurrently.

An asynchronous function call is said to start a new thread of execution. Each thread
has a unique thread number, with which, for example, its presence can be monitored
or its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace
availability. This implies a hierarchy in which a thread is said to be a child thread of
its parent thread. The base thread at the root of this hierarchy has thread number 0.

With multithreading, APL’s stack or state indicator can be viewed as a branching tree
in which the path from the base to each leaf is a thread.

At any point in time, only one thread is actually running; the others are paused. Each
APL thread has its own state indicator, or SI stack. When APL switches from one
thread to another, it saves the current stack (with all its local variables and function
calls), restores the new one, and then continues processing.

Chapter 4: Threads and Triggers 196

When a parent thread terminates, any of its children which are still running, become
the children of (are ‘adopted’ by) the parent’s parent.

Thread numbers are allocated sequentially from 0 to 2147483647. At this point, the
sequence ‘wraps around’ and numbers are allocated from 0 again avoiding any still in
use. The sequence is reinitialised when a)RESET command is issued, or the active
workspace is cleared, or a new workspace is loaded. A workspace may not be saved
with threads other than the base thread: 0, running.

Multi-Threading language elements.

The following language elements are provided to support threads.

Primitive operator, spawn: &.

System functions: JTID, OTCNUMS, OTNUMS, OTKILL, OTSYNC.
An extension to the GUI Event syntax to allow asynchronous callbacks.
A control structure: :Hold.

System commands:)HOLDS,) TID.

Extended)SI and) SINL display.

Running CallBack Functions as Threads

A callback function is associated with a particular event via the Event property of the
object concerned. A callback function is executed by [JDQ when the event occurs, or
by ONQ.

If you append the character & to the name of the callback function in the Event
specification, the callback function will be executed asynchronously as a thread when
the event occurs. If not, it is executed synchronously as before.

For example, the event specification:
OWS'Event' 'Select' 'DoIt&'

tells [IDQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object.

Chapter 4: Threads and Triggers 197

Thread Switching

Programming with threads requires care.
The interpreter may switch between running threads at the following points:

Between any two lines of a defined function or operator
On entry to a dfn or dop.
While waiting for a [IDL to complete.
While awaiting input from:
o [oQ
o [SR
o [ED
e The session prompt or [J: or [].
o While awaiting the completion of an external operation:
o A call on an external (AP) function.
© A call on a [INA (DLL) function
© A call on an OLE function.
o A call on a .NET function.

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the thread in
question passes through the switch point. It is the task of the application programmer
to organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the
:Ho Ld control structure.

High Priority Callback Functions

Note that the interpreter cannot perform thread-switching during the execution of a
high-priority callback. This is a callback function that is invoked by a high-priority
event which demands that the interpreter must return a result to Windows before it
may process any other event. Such high-priority events include Configure,
ExitWindows, DateTimeChange, DockStart, DockCancel, DropDown. It is therefore
not permitted to use a : Ho L d control structure in a high-priority callback function.

Chapter 4: Threads and Triggers 198

Name Scope

APL's name scope rules apply whether a function call is synchronous or
asynchronous. For example when a defined function is called, names in the calling
environment are visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and "sibling" functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of
local name clashes. For example, a GUI application can accommodate multiple
concurrent instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute,
both child and parent functions may modify values in the calling environment. Both
functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those
children will no longer have access to its local names, and references to such names
will either generate VALUE ERROR or be replaced by values from the environment
that called the parent function. If a child function references variables defined by its
parent or relies in any other way on its parent's environment (such as a local value of
[10), the parent function should therefore execute a JTSYNC in order to wait for its
children to complete before itself exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls
a new function (either synchronously or asynchronously); names in the new function
are beyond the purview of the original child. In other words, a function can only ever
see its calling stack decrease in size — never increase. This is in order that the parent
may call new defined functions without affecting the environment of its
asynchronous children.

Stack Considerations

When you start a thread, it begins with the SI stack of the calling function and sees
all of the local variables defined in all the functions down the stack. However, unless
the calling function specifically waits for the new thread to terminate (see Language
Reference Guide: Wait for Threads to Terminate), the calling functions will (bit by
bit, in their turn) continue to execute. The new thread's view of its calling
environment may then change. Consider the following example:

Chapter 4: Threads and Triggers 199

Suppose that you had the following functions: RUN[3] calls INIT which in turn
calls GETDATA but as 3 separate threads with 3 different arguments:

V RUN;A;B

[1] A<l
[2] B«'Hello World'
[3] INIT
[4] CALC
[5] REPORT
v

v INIT;C;D
[1] C<«D+«0
[2] GETDATA& 'Sales'
[3] GETDATA& 'Costs'
[4] GETDATA& 'Expenses’
\'

When each GETDATA thread starts, it immediately sees (via [JSI) that it was called
by INIT which was in turn called by RUN, and it sees local variables A, B, C and D.
However, once INIT[4] has been executed, INIT terminates, and execution of the
root thread continues by calling CALC. From then on, each GETDATA thread no
longer sees INIT (it thinks that it was called directly from RUN) nor can it see the
local variables C and D that INIT had defined. However, it does continue to see the
locals A and B defined by RUN, until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would
still see the values defined by RUN and not those defined by CALC. However, if
CALC were to modify A and B (as globals) without localising them, the GETDATA
threads would see the modified values of these variables, whatever they happened to
be at the time.

Globals and the Order of Execution

It is important to recognise that any reference or assignment to a global or semi-
global object (including GUI objects) is inherently dangerous (that is, a source of
programming error) if more than one thread is running. Worse still, programming
errors of this sort may not become apparent during testing because they are
dependent upon random timing differences. Consider the following example:

Chapter 4: Threads and Triggers 200

vV BUG;SEMI_GLOBAL
[1] SEMI_GLOBAL<«0
[2] FOO& 1
[3] GOog& 1

\'4

vV FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SOMETHING SEMI_GLOBAL
[3] :Else
[4] DO_SOMETHING_ELSE SEMI_GLOBAL
[5] tEndIf

\'4

v GOO
[1] SEMI_GLOBAL<«1

\'

In this example, it is formally impossible to predict in which order APL will execute
statements in BUG, FOO or GOO from BUG[2] onwards. For example, the actual
sequence of execution may be:

BUG[1] » BUG[2] » FOO[1] » FOO[2] ~
DO_SOMETHING[1]

or

BUG[1] » BUG[2] » BUG[3] » GOO[1] ~
FOO[1] » FOO[2] » FOO[3] ~»
FOO[4] - DO_SOMETHING_ELSE[1]

This is because APL may switch from one thread to another between any two lines in
a defined function. In practice, because APL gives each thread a significant time-
slice, it is likely to execute many lines, maybe even hundreds of lines, in one thread
before switching to another. However, you must not rely on this; thread-switching
may occur at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the GOO
thread after FOO[1]. If this happens, the value of SEMI_GLOBAL passed to DO_
SOMETHING will be 1 and not 0. Here is another source of error.

In this case, there are two ways to resolve the problem. To ensure that the value of
SEMI_GLOBAL remains the same from FOO[1] to FOO[2], you can use diamonds
instead of separate statements. For example:

:If SEMI_GLOBAL=0 ¢ DO_SOMETHING SEMI_GLOBAL

Chapter 4: Threads and Triggers 201

Even better, although less efficient, you can use : Ho L d to synchronise access to the
variable. For example:

vV FOO

[1] :Hold 'SEMI_GLOBAL'
[2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
[4] :Else
[5] DO_SOMETHING_ELSE SEMI_GLOBAL
[6] :EndIf
[7] :EndHold

\'

v GOO
[1] tHold 'SEMI_GLOBAL'
[2] SEMI_GLOBAL<«1
[3] :EndHold

\'

Now, although you still cannot be sure which of FOO and GOO will run first, you can
be sure that SEMI_GLOBAL will not change (because GOO cuts in) within FOO.

Note that the string used as the argument to : Ho L d is completely arbitrary, so long
as threads competing for the same resource use the same string.

A Caution

These types of problems are inherent in all multithreading programming languages,
and not just with Dyalog APL. If you want to take advantage of the additional
power provided by multithreading, it is advisable to think carefully about the
potential interaction between different threads.

Chapter 4: Threads and Triggers 202

Threads & Niladic Functions

In common with other operators, the spawn operator & may accept monadic or dyadic
functions as operands, but not niladic functions. This means that, using spawn, you
cannot start a thread that consists only of a niladic function

If you wish to invoke a niladic function asynchronously, you have the following
choices:

e Turn your niladic function into a monadic function by giving it a dummy
argument which it ignores.

o Call your niladic function with a dfn to which you give an argument that is
implicitly ignored. For example, if the function NIL is niladic, you can call it
asynchronously using the expression: {NIL}& 0

o Call your function via a dummy monadic function. For example:

v NIL_M DUMMY
[1] NIL

\4

NIL_M& '

o Use execute. For example:

¢& 'NIL'

Note that niladic functions can be invoked asynchronously as callback functions. For
example, the statement:

[OWS'Event' 'Select' 'NIL&'

will execute correctly as a thread, even though NIL is niladic. This is because
callback functions are invoked directly by [IDQ rather than as an operand to the
spawn operator.

Chapter 4: Threads and Triggers 203

Threads & External Functions

External functions in dynamic link libraries (DLLs) defined using the [INA interface
may be run in separate C threads. Such threads:

o take advantage of multiple processors if the operating system permits.
 allow APL to continue processing in parallel during the execution of a JNA
function.

When you define an external function using [INA, you may specify that the function
be run in a separate C thread by appending an ampersand (&) to the function name,
for example:

‘beep'[NA'user32|MessageBeep& i'
A MessageBeep will run in a separate C thread

When APL first comes to execute a multi-threaded [JNA function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads
may then run in parallel.

Note that when the [ONA call finishes and returns its result, its new C-thread is
retained to be re-used by any subsequent multithreaded [JNA calls made within the
same APL thread. Thus any APL thread that makes any multi-threaded [INA calls
maintains a separate C-thread for their execution. This C-thread is discarded when its
APL thread finishes.

Note that there is no point in specifying a [INA call to be multi-threaded, unless you
wish to execute other APL threads at the same time.

In addition, if your [JNA call needs to access an APL GUI object (strictly, a window
or other handle) it should normally run within the same C-thread as APL itself, and
not in a separate C-thread. This is because Windows associates objects with the C-
thread that created them. Although you can use a multi-threaded [ONA call to access
(say) a Dyalog APL Form via its window handle, the effects may be different than if
the [NA call was not multi-threaded. In general, [INA calls that access APL (GUI)
objects should not be multi-threaded.

If you wish to run the same [JNA call in separate APL threads at the same time, you
must ensure that the DLL is thread-safe. Functions in DLLs which are not thread-
safe, must be prevented from running concurrently by using the : Ho Ll d control
structure. Note that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one single-
threaded and one multi-threaded, associated with the same function in the DLL. This
allows you to call it in either way.

Chapter 4: Threads and Triggers 204

Synchronising Threads

Threads may be synchronised using fokens and a foken pool.

An application can synchronise its threads by having one thread add tokens into the
pool whilst other threads wait for tokens to become available and retrieve them from
the pool.

Tokens possess two separate attributes, a fype and a value.

The #ype of a token is a positive or negative numeric scalar. The value of a token is
any arbitrary array that you might wish to associate with it.

The token pool may contain up to 2*31 tokens; they do not have to be unique neither
in terms of their types nor of their values.

The following system functions are used to manage the token pool:

OTALLOC | Allocates ranges of tokens.

gTput Puts tokens into the pool.

If necessary waits for, and then retrieves some tokens from the

OTGET
pool.

gTpooL Reports the types of tokens in the pool

OTREQ Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want
one thread to reach a certain point in processing before a second thread can continue.
Perhaps the first thread performs a calculation, and the second thread must wait until
the result is available before it can be used.

This can be achieved by having the first thread put a specific type of token into the
pool using JTPUT. The second thread waits (if necessary) for the new value to be
available by calling DTGET with the same token type.

Notice that when [JTGET returns, the specified tokens are removed from the pool.
However, negative token types will satisfy an infinite number of requests for their
positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For
example, a semaphore to control a number of resources can be implemented by
keeping that number of tokens in the pool. Each thread will take a token while
processing, and return it to the pool when it has finished.

Chapter 4: Threads and Triggers 205

A second complex example is that of a /atch which holds back a number of threads
until the coast is clear. At a signal from another thread, the latch is opened so that all
of the threads are released. The latch may (or may not) then be closed again to hold
up subsequently arriving threads. A practical example of a latch is a ferry terminal.

Semaphore Example

A semaphore to control a number of resources can be implemented by keeping that
number of tokens in the pool. Each thread will take a token while processing, and
return it to the pool when it has finished.

For example, if we want to restrict the number of threads that can have sockets open
at any one time.

sock<«99 A socket-token
any +ive number will do).
OTPUT 5/sock A add 5 socket-tokens to
pool.

V sock_open

[1] :If sock=[JTGET sock A grab a socket token
[.] . A do stuff.
[.] OTPUT sock A release socket token
[.] :Else
[.] error'sockets off' A sockets switched off by
retract (see below).
[.] :EndIf
\'4
0 OTPUT Otreq Otnums A retract socket "service"

with 0 value.

Latch Example

A latch holds back a number of threads until the coast is clear. At a signal from
another thread, the latch is opened so that all of the threads are released. The latch
may (or may not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the
queue until the ferry arrives. The barrier is then opened and all (up to a maximum
number) of the cars are allowed through it and on to the ferry. When the last car is
through, the barrier is re-closed.

Chapter 4: Threads and Triggers 206

tkt<é A 6-token: ferry
ticket.

V car ...
[1] OTGET tkt A await ferry.
[2] e

v ferry

[1] arrives in port

[2] OTPUT(t,/Otreq Otnums)ntkt A ferry tickets for
all.

[3]

Note that it is easy to modify this example to provide a maximum number of ferry
places per trip by inserting max_placest between OTPUT and its argument. If
fewer cars than the ferry capacity are waiting, the 1+ will fill with trailing 0s. This
will not cause problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for
traffic, the barrier could be opened permanently by putting a negative ticket in the
pool.

OTPUT -tkt A open ferry barrier permanently.
Cars could choose to take the last ferry if there are places:

V car ...
[1] :Select OTGET tkt
[2] :Case tkt ¢ take the last ferry.
[3] :Case -tkt ¢ ferry full: take the new bridge.
[4] :End

The above : Se lect works because by default, JTPUT -tkt puts a value of -tkt
into the token.

Debugging Threads

If a thread sustains an untrapped error, its execution is suspended in the normal way.
If the Pause on Error option is set, all other threads are paused. If Pause on Error
option is not set, other threads will continue running and it is possible for another
thread to encounter an error and suspend (see the Dyalog for Microsoft Windows
Installation and Configuration Guide).

Using the facilities provided by the Tracer and the Threads Tool (see the Dyalog for
Microsoft Windows UI Guide) it is possible to interrupt (suspend) and restart
individual threads, and to pause and resume individual threads, so any thread may be
in one of three states - running, suspended or paused.

Chapter 4: Threads and Triggers 207

The Tracer and the Session may be connected with any suspended thread and you
can switch the attention of the Session and the Tracer between suspended threads
using) TID or by clicking on the appropriate tab in the Tracer. At this point, you
may:

Examine and modify local variables for the currently suspended thread.
Trace and edit functions in the current thread.

Cut back the stack in the currently suspended thread.

Restart execution.

Start new threads

The error message from a thread other than the base is prefixed with its thread
number:

260:DOMAIN ERROR

Div[2] rslt<num=div
A

State indicator displays:) ST and) SINL have been extended to show threads' tree-
like calling structure.

)SI
#.Calc[1]
&5
. #.D0ivSub[1]
&7
#.DivSub[1]
&6
#.Div[2]*
&L
#.Sub[3]
#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Di v
and Cal c. Function D1 v, after spawning DivSub in each of threads 6 and 7, have
been suspended at line [2].

Removing stack frames using Quit from the Tracer or ~ from the session affects only
the current thread. When the final stack frame in a thread (other than the base thread)
is removed, the thread is expunged.

JRESET removes all but the base thread.
Note the distinction between a suspended thread and a paused thread.

A suspended thread is stopped at the beginning of a line in a defined function or
operator. It may be connected to the Session so that expressions executed in the
Session do so in the context of that thread. It may be restarted by executing ~Line
(typically, ~[ILC).

Chapter 4: Threads and Triggers 208

A paused thread is an inactive thread that is currently being ignored by the thread
scheduler. A paused thread may be paused within a call to [JDQ, a call on an external
function, at the beginning of a line, or indeed at any of the thread-switching points
described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button. A
paused thread resumes only in the sense that it ceases to be ignored by the thread
scheduler and will therefore be switched back to at some point in the future. It does
not actually continue executing until the switch occurs.

Triggers

Triggers provide the ability to have a function called automatically whenever a
variable or a Field is assigned. Triggers are actioned by all forms of assignment («),
but only by assignment.

Triggers are designed to allow a class to perform some action when a field is
modified — without having to turn the field into a property and use the property setter
function to achieve this. Avoiding the use of a property allows the full use of the
APL language to manipulate data in a field, without having to copy field data in and
out of the class through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger
from a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the
Trigger Function. The name of a variable or Field which has an associated Trigger
Function is termed a Trigger.

A function is declared as a Trigger function by including the statement:
:Implements Trigger Namel,Name2,Name3,
where Name 1, Name2 etc. are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member Description

Name of the Trigger whose change in value has caused the

Name Trigger Function to be invoked.

NewValue |The newly assigned value of the Trigger

The previous value of the Trigger. If the Trigger was not
OldValue |previously defined, a reference to this Field causes a VALUE
ERROR.

Chapter 4: Threads and Triggers 209

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The
precise timing is not guaranteed and may not be consistent because internal
workspace management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be
re-established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more
than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this
will potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix
the Trigger function in the function in which the Trigger is localised; for example:

vV TRIG arg
[1] :Implements Trigger A
[2]
vV TEST;A
[1] OFX OOR'TRIG'
[2] A«<10
Example

The following function displays information when the value of variables A or B
changes.

vV TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 A VALUE ERROR
[4] arg.Name'was "arg.OldValue
[5] :Else
[6] arg.Name' was [undefined]'
[7] :EndTrap

v

Chapter 4: Threads and Triggers 210

Note that on the very first assignment to A, when the variable was previously
undefined, arg.0ldValue isa VALUE ERROR

A<10

A is now 10

A was [undefined]
A+<10

A is now 20

A was 10

A<'Hello World'
A is now Hello World
A was 20

A[1]«c2 3p16
A is now 1 2 3 ello World

4L 56
A was Hello World
B«dA
B 1is now 321 ello World
6 5 4
B was [undefined]

A<[ONEW MyClass
A is now #.[Instance of MyClass]

A was 1 2 3 ello World
4L 56
'"F'OWC'Form'
A<F
A is now #.F
A was #.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing A to a
Form using OWC does not invoke TRIG.

"A'0OWC'FORM' A Note that Trigger Function is not
invoked

However, the connection (between A and TRIG) remains and the Trigger Function
will be invoked if and when the Trigger is re-assigned.

A<99
A is now 99
A was #.A

See Trigger Fields on page 144 for information on how a Field (in a Class) may be
used as a Trigger.

Chapter 4: Threads and Triggers 211

Global Triggers

A global Trigger is a function that triggers on any assignment to a global variable in
the same namespace. Global Triggers may be disabled and re-enabled using 2007 T.
See Language Reference Guide: Disable Global Triggers.

This is implemented by the function declaration statement:
:Implements Trigger x

The argument to the trigger function is an instance of the internal class
TriggerArguments which contains the following members

Member Description

The name of the global variable that is about to be

Name changed.

If the assignment is some form of indexed assignment,
Indexers is an array with the same shape as the sub-
Indexers array that was assigned and contains the ravel-order,
[JI0-sensitive, indices of the changed elements.
Otherwise, Indexers is undefined.

Example:

vV foo args
[1] :Implements Trigger x
[2] args.Name'has changed'
[3] :If 2=args.[ONC'Indexers'
[4] 'pIndexers'(pargs.Indexers)
[5] ‘Indexers'(,args.Indexers)
[6] :EndIf

\'4

vec«+15

vec has changed

a b«10 'Pete’
a has changed
b has changed

vec[2 4]<«99
vec has changed
pIndexers 2
Indexers 2 4

array<2 3 Lpi12
array has changed

Chapter 4: Threads and Triggers 212

(2 1 3tarray)<«l42
array has changed
pIndexers 2 1 3
Indexers 1 2 3 13 14 15

Notes

« like other Triggers, only the most recently fixed global trigger function will
apply and be called on assignment to a global variable.

 global triggers do not apply to local names nor to semi-globals (names which
are localised further up the stack).

o an assignment to a global variable will fire both its specific trigger (if defined)
and the global trigger. However, the order of execution is undefined.

« do not use an argument name for your trigger function that may conflict with
a global variable name in the namespace.

Further Example

A potential use for a global trigger is to detect the unintended creation of global
variables due to localisation omissions. Note however that the timing of the
activation of the Trigger is unpredictable. In this example, the trigger for the
assignment to b activates after function hoo has exited. When Threads are involved,
timing becomes even less predictable.

vV CatchGlobals arg

[1] A Displays a warning when a global is assigned
[2] :Implements Trigger x
[3] "xxx assignment to global variable: ',
arg.Name,' from ',14[0SI
v
v foo
[1] goo
v
V goo
[1] hoo
v
vV hoo
[1] a«10
[2] b<«a
v
foo

xxx assignment to global variable: a from hoo goo foo
xxx assignment to global variable: b from goo foo

Chapter 5: APL Files 213

Chapter 5:

APL Files

Introduction

Most languages store programs and data separately. APL is unusual in that it allows
you to store programs and data together in a workspace.

This can be inefficient if your dataset gets very large; when your workspace is
loaded, you are loading ALL of your data, whether you need it or not.

It also makes it difficult for other users to access your data, particularly if you want
them to be able to update it.

In these circumstances, you must extract your data from your workspace, and write it
to a file on disk, thus separating your data from your program. There are many
different kinds of file format. This section is concerned with the APL Component
File system which preserves the idea that your data consists of APL objects; hence
you can only access this type of file from within APL

The Component File system has a set of system functions through which you access
the file. Although this means that you have to learn a whole new set of functions in
order to use files, you will find that they provide you with a very powerful
mechanism to control access to your data.

Chapter 5: APL Files 214

Component Files

Overview

A component file is a data file maintained by Dyalog APL. It contains a series of
APL arrays known as components which are accessed by reference to their relative
position or component number within the file. Component files are just like other
data files and there are no special restrictions imposed on names or sizes.

A set of system functions is supplied to perform a range of file operations. These
provide facilities to create or delete files, and to read and write components. Facilities
are also provided for multi-user access, including the capability to determine who
may do what, and file locking for concurrent updates.

Tying and Untying Files

To access an existing component file it must be tied, that is, opened for use. The tie

may be exclusive (single-user access) or shared (multi-user access). A file is untied,

that is, closed, using JFUNTIE or on terminating Dyalog APL. File ties survive
)LOAD, [JLOAD and) CLEAR operations.

Tie Numbers

A file is tied by associating a file name with a tie number. Tie numbers are integers
in the range | - 2147483647 and, you can supply one explicitly, or have the
interpreter allocate the next available one by specifying 0. The system functions
which tie files return the tie number as a "shy" result.

Creating and Removing Files

A component file is created using JF CREATE which automatically ties the file for
exclusive use. A newly created file is empty, that is, contains 0 components. A file is
removed with [JF ERASE, although it must be exclusively tied to do so.

Adding and Removing Components

Components are added to a file using [JF APPEND and removed using [JFDROP.
Component numbers are allocated consecutively starting at 1. Thus a new component
added by F APPEND is given a component number which is one greater than that of
the last component in the file. Components may be removed from the beginning or
end of the file, but not from the middle. Component numbers are therefore
contiguous.

Chapter 5: APL Files 215

Reading and Writing Components

Components are read using JFREAD and overwritten using JFREPLACE. There are
no restrictions on the size or type of array which may replace an existing component.
Components are accessed by component number.

Component Information

In addition to the data held in a component, the user ID that wrote it and the time at
which it was written is also recorded.

Multi-User Access

[FSTIE ties a file for shared (that is, multi-user) access. This kind of access would
be appropriate for a multi-user UNIX system, a network of single user PCs, or
multiple APL tasks under Microsoft Windows.

[OFHOLD provides the means for the user to temporarily prevent other co-operating
users from accessing one or more files. This is necessary to allow a single logical
update involving more than one component, and perhaps more than one file, to be
completed without interference from another user. JFHOLD is applicable to External
Variables as well as Component Files

File Access Control

There are two levels of file access control. As a regular file, the operating system
read/write controls for owner and other users apply. In addition, Dyalog manages its
own access controls using the access matrix. This is an integer matrix with 3
columns and any number of rows. Column 1 contains user numbers, column 2 an
encoding of permitted file operations, and column 3 passnumbers. Each row specifies
which file operations may be performed by which user(s) with which passnumber. A
value of 0 in column 1 specifies all users. A value of ~1 in column 2 specifies all file
operations. A value of 0 in column 3 specifies no passnumber. If any row of the
access matrix contains (0 ~1 0) it specifies that all users may perform all file
operations with no passnumber.

User Number

Under Windows, this is a number which is defined by the aplnid parameter. If you
intend to use Dyalog's access matrix to control file access in a multi-user
environment, it is desirable to allocate to each user, a distinct user number.
However, if you intend to rely on underlying operating system controls, allocating a
user number of 0 (the default installation value) to everyone is more appropriate.
Under non-Windows platforms the User Number is set to be the effective user-id of
the APL process and cannot be altered. In both cases, a user number of 0 causes APL
to circumvent the access matrix mechanism described below.

Chapter 5: APL Files 216

Permission Code

This is an integer representation of a Boolean mask. Each bit in the mask indicates
whether or not a particular file operation is permitted as follows:

Bit No.

15)14(13|12(11)10(9|8|7|6|5|4|3|2]|1

File Access
R S S B) I O O N Operation Code

L—— OFREAD 1
OFTIE 2
OFERASE L
OF APPEND 8
OFREPLACE 16
(OFDROP 32
OFRENAME 128
OFRDCI 512
OFRESIZE 1024
OFHOLD 2048
OFRDAC 4096
OFSTAC 8192
OFHIST 16384

For example, if bits 1, 4 and 6 are set and all other relevant bits are zero only
OFREAD, OFAPPEND and [JFDROP are permitted. A convenient way to set up the
mask is to sum the access codes associated with each operation.

For example, the value 41 (1+8+32) authorises JFREAD, [JFAPPEND and [JFDROP.
A value of 71 (all bits set) permits all operations. Thus by subtracting the access
codes of operations to be forbidden, it is possible to permit all but certain types of
access. For example, a value of 133 (T1- 4+128) permits all operations except
OF ERASE and JFRENAME. Note that the value of unused bits is ignored. Any non-
zero permission code allows JFSTIE and JFSIZE. OFCREATE, JFUNTIE,
OFLIB, OFNAMES and [JFNUMS are not subject to access control. Passnumbers may
also be used to establish different levels of access for the same user.

When the user attempts to tie a file using JF TIE or JF STIE a row of the access
matrix is selected to control this and subsequent operations.

If the user is the owner, and the owner's user ID does not appear in the access matrix,
the value (OAI[1] ~1 0)is conceptually appended to the access matrix. This
ensures that the owner has full access rights unless they are explicitly restricted.

The chosen row is the first row in which the value in column 1 of the access matrix
matches the user ID and the value in column 3 matches the supplied passnumber
which is taken to be zero if omitted.

Chapter 5: APL Files 217

If there is no match of user ID and passnumber in the access matrix (including
implicitly added rows) then no access is granted and the tie fails with a FILE
ACCESS ERROR.

Once the applicable row of the access matrix is selected, it is used to verify all
subsequent file operations. The passnumber used to tie the file MUST be used for
every subsequent operation. Secondly, the appropriate bit in the permission code
corresponding to the file operation in question must be set. If either of these
conditions is broken, the operation will fail with FILE ACCESS ERROR.

If the access matrix is changed while a user has the file tied, the change takes
immediate effect. When the user next attempts to access the file, the applicable row
in the access matrix will be reselected subject to the supplied passnumber being the
same as that used to tie the file. If access with that password is rescinded the
operation will fail with FILE ACCESS ERROR.

When a file is created using [JF CREATE, the access matrix is empty. At this stage,
the owner has full access with passnumber 0, but no access with a non-zero
passnumber. Other users have no access permissions. Thus only the owner may
initialise the access matrix.

User 0

If a user has an aplnid of 0, the access matrix and supplied passnumbers are ignored.
This user is granted full and unrestricted access rights to all component files, subject
only to underlying operating system restrictions.

General File Operations

OFLIB gives a list of component files in a given directory. OFNAMES and [JF NUMS
give a list of the names and tie numbers of tied files. These general operations which
apply to more than one file are not subject to access controls.

Component File System Functions

See Language Reference for full details of the syntax of these system functions.

General

OFAVAIL Report file system availability
File Operations

OFCREATE Create a file

OFTIE Tie an existing file (exclusive)

OFSTIE Tie an existing file (shared)

Chapter 5: APL Files

218

OFUNTIE Untie file(s)
QdFcopry Copy a file
OFERASE Erase a file
OFRENAME Rename a file

File information

OFHIST Report file events

OF NUMS Report tie numbers of tied files
OFNAMES Report names of tied files
OFLIB Report names of component files
OFPROPS Report file properties

OFSIzZE Report size of file

Writing to the file

OF APPEND Append a component to the file
OFREPLACE Replace an existing component

Reading from a file

OFREAD

Read one or more components

OFRDCI

Read component information

Manipulating a file

0OFDROP

Drop a block of components

OFRESIZE

Change file size (forces a compaction)

0F CHK

Check and repair a file

Access manipulation

OFSTAC

Set file access matrix

OFRDAC

Read file access matrix

Control multi-user access

OFHOLD

Hold file(s) - see later section for details

Chapter 5: APL Files 219

Using the Component File System

Let us suppose that you have written an APL system that builds a personnel database,
containing the name, age and place of birth of each employee. Let us assume that you
have created a variable DATA, which is a nested vector with each element containing

a person's name, age and place of birth:

DISPLAY 21DATA

Then the following APL expressions can be used to access the database:

Example 1:
Show record 2

DISPLAY 2>-DATA

Example 2:
How many people in the database?

pDATA
123

Example 3:
Update Pauline's age
(2 2oDATA)<«16

Chapter 5: APL Files 220

Example 4:
Add a new record to the database

DATA ,« c<'Maurice' 18 'London'
Now let's build a component file to hold our personnel database.

Create a new file, giving the file name, and the number you wish to use to identify it
(the file tie number):

‘COMPFILE' [JFCREATE 1

If the file already exists, or you have already used this tie number, then APL will
respond with the appropriate error message.

Now write the data to the file. We could write a function that loops to do this, but it
is neater to take advantage of the fact that our data is a nested vector, and use each

).
DATA [FAPPEND™ 1

Now we'll try our previous examples using this file.

Example 1:
Show record 2

DISPLAY [FREAD 1 2

Example 2:
How many people in our database?

OFSIZE 1 A First component, next
1 125 10324 4294967295 A component, file size,
A maximum file size

T1+2>o[FSIZE 1 A Number of data items

The fourth element of JF SIZE indicates the file size limit. Dyalog APL does not
impose a file size limit, although your operating system may do so, but the concept is
retained in order to make this version of Component Files compatible with others.

Chapter 5: APL Files

221

Example 3:

Update Pauline's age

REC « OOFREAD 1 2 A Read second component

REC[2] « 18 A Change age

REC OFREPLACE 1 2 A And replace component
Example 4:

Add a new record

('Janet' 25 'Basingstoke') [JFAPPEND 1

Example 5:
Rename our file

"PERSONNEL"' [FRENAME 1

Example 6:

Tie an existing file; give file name and have the interpreter allocate the next available

tie number.

"SALARIES' [FTIE O
2

Example 7:
Give everyone access to the PERSONNEL file
(1 3p0 ~1 O)OFSTAC 1

Example 8:
Set different permissions on SALARIES.

AM « 1 3p1 71 0 A Owner ID 1 has full access
AM;« 102 1 0 A User ID 102 has READ only
AM;« 210 2073 0 A User ID 210 has

A READ+APPEND+REPLACE+HOLD

AM [OFSTAC 2 A Store access matrix
Example 9:

Report on file names and associated numbers

OFNAMES ,0OFNUMS
PERSONNEL 1
SALARIES 2

Chapter 5: APL Files 222

Example 10:
Untie all files
OFUNTIE [OFNUMS

Programming Techniques

Controlling Multi-User Access

Obviously, Dyalog APL contains mechanisms that prevent data getting mixed up if
two users update a file at the same time. However, it is the programmer's
responsibility to control the logic of multi-user updates.

For example, suppose two people are updating our database at the same time. The
first checks to see if there is an entry for ' Geof f ', sees that there isn't so adds a
new record. Meanwhile, the second user is checking for the same thing, and so also
adds a record for 'Geof f '. Each user would be running code similar to that shown
below:

V UPDATE;DATA;NAMES
[1] A Using the component file
[2] "PERSONNEL" [OFSTIE 1
[3] NAMES<«>o[JFREAD ™ 1, 171+25[JFSIZE 1
[4] >ENDx1(c'Geoff')eNAMES
[5] ('Geoff' 41 'Hounslow')[JFAPPEND 1
[6] END:[JFUNTIE 1

\

The system function JF HOLD provides the means for the user to temporarily prevent
other co-operating users from accessing one or more files. This is necessary to allow
a single logical update, perhaps involving more than one record or more than one
file, to be completed without interference from another user.

The code above is replaced by that below:

vV UPDATE ;DATA;NAMES

] a Using the component file

] 'PERSONNEL' [OFSTIE 1

] [OFHOLD 1

] NAMES<«2o[JFREAD ™ 1,71~ 1+2>5[FSIZE 1
] -ENDxi(c'Geoff')eNAMES

] ('Geoff' 41 'Hounslow')FAPPEND 1
] END:0FUNTIE 1 ¢ [FHOLD 10

v

o L L W W W W |
NOOOTF WN —

Chapter 5: APL Files 223

Successive [JFHOLDs on a file executed by different users are queued by Dyalog
APL; once the first [JFHOLD is released, the next on the queue holds the file.

[F HOLDs are released by return to immediate execution, by JFHOLD 8, or by
erasing the external variable.

It is easy to misunderstand the effect of JF HOLD. It is NOT a file locking mechanism
that prevents other users from accessing the file. It only works if the tasks that wish
to access the file co-operate by queuing for access by issuing [JF HOLDs. It would be
very inefficient to issue a JFHOLD on a file then allow the user to interactively edit
the data with the hold in operation. What happens if he goes to lunch? Any other user
who wants to access the file and cooperates by issuing a JFHOLD would have to wait
in the queue for 3 hours until the first user returns, finishes his update and his
[FHOLD is released. It is usually more efficient (as well as more friendly) to issue

[F HOLDs around a small piece of critical code.

Suppose we had a control file associated with our personnel data base. This control
file could be an external variable, or a component file. In both cases, the concept is
the same; only the commands needed to access the file are different. In this example,
we will use a component file:

"CONTROL '[JFCREATE 1 A Create control file

(1 3p0 "1 0) OOFSTAC 1 ~na Allow everyone access

6 OFAPPEND 1 A Set component 1 to empty
OFUNTIE 1 A And untie it

Now we'll allow our man that likes long lunch breaks to edit the file, but will control
the hold in a more efficient way:

Chapter 5: APL Files 224

vV EDIT;CMP;CV
[1] A Share-tie the control file

[2] "CONTROL' [FSTIE 1
[3] A Share-tie the data file
[4] "PERSONNEL' [FSTIE 2

[5] A Find out which component the user wants to edit
[6] ASK:CMP<~ASKAWHICHARECORD
[71] A Hold the control file
[8] [OFHOLD 1
[9] A Read the control vector
[10] CV<[JFREAD 1 1
[11] A Make control vector as big as the data file
[12] CV«(~1+2o[JFSIZE 2)tCV
[13] A Look at flag for this component
[14] ~(FREE,INUSE)[1+CMP>oCV]
[15] A In use - tell user and release hold
[16] 1INUSE:'Record in use' ¢ [JFHOLD & ¢ -ASK
[17] A Ok to use - flag in-use and release hold
[18] FREE:CV[CMP]«1 o CV [OFREPLACE 1 1o [JFHOLD &
[19] @A Let user edit the record
[20] EDITARECORD RECORD
[21] @A When he's finished, clear the control vector
[22] [OFHOLD 1
[23] CV<[JFREAD 1 1 ¢CV[CMP]«0 ¢ CV [IFREPLACE 1 1
[26] [OJFHOLD ®&
[27] A And repeat
[28] ->ASK

\'

Component 1 of our CONTROL file acts as a control vector. Its length is set equal to
the number of components in the PERSONNEL file, and an element is set to 1 if a
user wishes to access the corresponding data component. Only the control file is ever
subject to a [JFHOLD, and then only for a split-second, with no user inter-action
being performed whilst the hold is active.

When the first user runs the function, the relevant entry in the control vector will be
set to 1. If a second user accesses the database at the same time, he will have to wait
briefly whilst the control vector is updated. If he wants the same component as the
first user, he will be told that it is in use, and will be given the opportunity to edit
something else.

This simple mechanism allows us to lock the components of our file, rather the than
entire file. You can set up more informative control vectors than the one above; for
example, you could easily put the user name into the control vector and this would
enable you to tell the next user who is editing the component he is interested in.

Chapter 5: APL Files 225

File Design

Our personnel database could be termed a record oriented system. All the
information relating to one person is easily obtained, and information relating to a
new person is easily added, but if we wish to find the oldest person, we have to read
ALL the records in the file.

It is sometimes more useful to have separate components, perhaps stored on separate
files, that hold indexes of the data fields that you may wish to search on. For
example, suppose we know that we always want to access our personnel database by
name. Then it would make sense to hold an index component of names:

A Extract name field from each data record
"PERSONNEL' [OFSTIE 1
NAMES<«>o[JFREAD'1, "1 ~1+2>[JFSIZE 2

A Create index file, and append NAMES
"INDEX' [FCREATE 2
NAMES [JFAPPEND 2

Then if we want to find Pauline's data record:

NAMES<[JFREAD 2,1 A Read index of names
CMP«<NAMESi1c'Pauline’ A Search for Pauline
DATA<[JFREAD 1,CMP A Read relevant record

There are many different ways to structure data files; you must design a structure that
is the most efficient for your application.

Internal Structure

If you are going to make a lot of use of APL files in your systems, it is useful for you
to have a rough idea of how Dyalog APL organises and manages the disk area used
by such files.

The internal structure of external variables and component files is the same, and the
examples given below apply to both.

Consider a component file with 3 components:

'"TEMP' [JFCREATE 1
'One' 'Two' 'Three' [OFAPPEND™1

Chapter 5: APL Files 226

Dyalog APL will write these components onto contiguous areas of disk:

| One | Two | Three |

Replace the second component with something the same size:
‘Six' [OFREPLACE 1 2

This will fit into the area currently used by component 2.

| One | Six | Three |

If your system uses fixed length records, then the size of your components never
change, and the internal structure of the file remains static.

However, suppose we start replacing larger data objects:
‘Bigger One' [JFREPLACE 1 1

This will not fit into the area currently assigned to component 1, so it is appended to
the end of the file. Dyalog APL maintains internal tables which contain the location
of each component; hence, even though the components may not be physically stored
in order, they can always be accessed in order.

121 131 I1]

The area that was occupied by component 1 now becomes free.

Now we'll replace component 3 with something bigger:
'BigThree' [FREPLACE 1 3

Component 3 is appended to the end of the file, and the area that was used before
becomes free:

Chapter 5: APL Files 227

Dyalog APL keeps tables of the size and location of the free areas, as well as the
actual location of your data. Now we'll replace component 2 with something bigger:

‘BigTwo' [OFREPLACE 1 2

Free areas are used whenever possible, and contiguous holes are amalgamated.

You can see that if you are continually updating your file with larger data objects,
then the file structure can become fragmented. At any one time, the disk area
occupied by your file will be greater than the area necessary to hold your data.
However, free areas are constantly being reused, so that the amount of unused space
in the file will seldom exceed 30%.

Whenever you issue a monadic JFRESIZE command on a component file, Dyalog
APL COMPACTS the file; that is, it restructures it by reordering the components and
by amalgamating the free areas at the end of the file. It then truncates the file and
releases the disk space back to the operating system (note that some versions of
UNIX do not allow the space to be released). For a large file with many components,
this process may take a significant time.

Error Conditions

FILE SYSTEM NOT AVAILABLE

A FILE SYSTEM NOT AVAILABLE (Error code 28) error will be generated if the
operating system returns an unexpected error when attempting to get a lock on a
component file. In Windows environments this may indicate that opportunistic locks
(aka oplocks) are in use; they should be disabled if Dyalog components files are
being used.

FILE SYSTEM TIES USED UP

A FILE SYSTEM TIES USED UP (Error code 30) error will be generated when
an attempt is made to open more component files than is possible.

FILE TIED

A FILE TIED error is reported if you attempt to tie a file which another user has
exclusively tied.

Chapter 5: APL Files 228

Limitations
File Tie Quota

The File Tie Quota is the maximum number of files that a user may tie concurrently.
Dyalog APL itself allows a maximum of 1024 under UNIX and 512 under Windows,
although in either case your installation may impose a lower limit. When an attempt
is made to exceed this limit, the report FILE TIE QUOTA (Error code 31) is given.
This error will also be generated if an attempt is made to exceed the maximum
number of open files that is imposed by the operating system.

File Name Quota

Dyalog APL records the names of each user's tied files in a buffer of 40960 bytes.
When this buffer is full, the report FILE NAME QUOTA USED UP (Error code 32)
will be given. This is only likely to occur if long pathnames are used to identify files.

The Effect of Buffering

Disk drives are fairly slow devices, so most operating systems take advantage of a
facility called buffering. This is shown in simple terms below:

| Operating System |
| instruction to |
| write large data | --------- . | disk
| object to a file |

When you issue a write to a disk area, the data is not necessarily sent straight to the
disk. Sometimes it is written to an internal buffer (or cache), which is usually held in
(fast) main memory. When the buffer is full, the contents are passed to the disk. This
means that at any one time, you could have data in the buffer, as well as on the disk.
If your machine goes down whilst in this state, you could have a partially updated
file on the disk. In these circumstances, the operating system generally recovers your
file automatically.

If this facility is exploited, it offers very fast file updating. For systems that are I/O
bound, this is a very important consideration. However, the disadvantage is that
whilst it may appear that a write operation has completed successfully, part of the
data may still be residing in the buffer, waiting to be flushed out to the disk. It is
usually possible to force the buffer to empty; see your operating system manuals for
details (UNIX automatically invokes the sync () command every few seconds to
flush its internal buffers).

Chapter 5: APL Files 229

Dyalog APL exploits this facility, employing buffers internal to APL as well as
making use of the system buffers. Of course, these techniques cannot be used when
the file is shared with other users; obviously, the updates must be written
immediately to the disk. However, if the file is exclusively tied, then several layers of
buffers are employed to ensure that file access is as fast as possible.

You can ensure that the contents of all internal buffers are flushed to disk by issuing
OFUNTIE @ atany time.

Integrity and Security

The structure of component files, the asynchronous nature of the buffering performed
by APL, by the Operating System, and by the external device sub-system, introduces
the potential danger that a component file might become damaged. To prevent this
happening, the component file system includes optional journaling and check-sum
features. These are optional because the additional security these features provide
comes at the cost of reduced performance. You can choose the level of security that
is appropriate for your application.

When journaling is enabled (see [JF PROPS), files are updated using a journal which
effectively prevents system or network failures from causing file damage.

Additional security is provided by the check sum facility which enables component
files to be repaired using the system function (JF CHK. See Language Reference
Guide: File Check and Repair.

Level 1 journaling protects a component file from damage caused by an abnormal
termination of the APL process. This could occur if the process is deliberately or
accidentally terminated by the user or by the Operating System, or by an error in
Dyalog APL.

Level 2 journaling provides protection not just against the possibility that the APL
process terminates abnormally, but that the Operating System itself fails. However, a
damaged component file must be explicitly repaired using the system function

OF CHK which will repair any damaged components by rolling them back to their
previous states.

Level 3 provides the same level of protection as Level 2, but following the abnormal
termination of either APL or the Operating System, the rollback of an incomplete
update will be automatic and no explicit repair will be needed.

Higher levels of Journaling inevitably reduce the performance of component file
updates.

For further information, see [JFPROPS and [JF CHK.

Chapter 5: APL Files 230

Operating System Commands

APL files are treated as normal data files by the operating system, and may be
manipulated by any of the standard operating system commands.

Do not use operating system commands to copy, erase or move component files that
are tied and in use by an APL session.

Chapter 6: Error Trapping 231

Chapter 6:

Error Trapping

Standard Error Action

The standard system action in the event of an error or interrupt whilst executing an
expression is to suspend execution and display an error report. If necessary, the state
indicator is cut back to a statement such that there is no halted locked function visible
in the state indicator.

The error report consists of up to three lines

1. The error message, preceded by the symbol ¢ if the error occurred while
evaluating the Execute function.

2. The statement in which the error occurred (or expression being evaluated by
the Execute function), preceded by the name of the function and line number
where execution is suspended unless the state indicator has been cut back to
immediate execution mode. If the state indicator has been cut back because of
a locked function in execution, the displayed statement is that from which the
locked function was invoked.

3. The symbol * under the last referenced symbol or name when the error
occurred. All code to the right of the # symbol in the expression will have
been evaluated.

Examples

X PLUS U

VALUE ERROR
X PLUS U
A

FOO
INDEX ERROR
FOO[2] X«X+A[I]
A

CALC
¢DOMAIN ERROR
CALC[5] =0

A

Chapter 6: Error Trapping 232

Error Trapping Concepts

The purpose of this section is to show some of the ways in which the ideas of error
trapping can be used to great effect to change the flow of control in a system.

First, we must have an idea of what is meant by error trapping. We are all used to
entering some duff APL code, and seeing a (sometimes) rather obscure, esoteric error
message echoed back:

10+0
DOMAIN ERROR
10+0

A

This message is ideal for the APL programmer, but not so for the end user. We need
a way to bypass the default action of APL, so that we can take an action of our own,
thereby offering the end user a more meaningful message.

Every error message reported by Dyalog APL has a corresponding error number (for
a list of error codes and message, see [JTRAP, Language Reference). Many of these
error numbers plus messages are common across all versions of APL. We can see
that the code for DOMAIN ERROR is 11, whilst LENGTH ERROR has code 5.

Dyalog APL provides two distinct but related mechanisms for the trapping and
control of errors. The first is based on the control structure :Trap

:EndTrap, and the second, on the system variable (ITTRAP. The control structure is
easier to administer and so is recommended for normal use, while the system variable
provides slightly finer control and may be necessary for specialist applications.

Last Error number and Diagnostic Message

Dyalog APL keeps a note of the last error that occurred, and provides this
information through system functions: [JEN, JEM and [JDM.

10+0
DOMAIN ERROR
10+0

A

Error Number for last occurring error:

OEN
11

Error Message associated with code 11:

OeM 11
DOMAIN ERROR

Chapter 6: Error Trapping 233

[IDM (Diagnostic Message) is a 3 element nested vector containing error message,
expression and caret:

(oM
DOMAIN ERROR 1040 A

Use function DISPLAY to show structure:
DISPLAY [IDM

DOMAIN ERROR 10+0 A

€

Mix (1) of this vector produces a matrix that displays the same as the error message
produced by APL:

+0JOM
DOMAIN ERROR
10+0

A

Error Trapping Control Structure

You can embed a number of lines of code in a : Trap control structure within a
defined function.

[1] .

[2] :Trap O

[3] e

(4] .

[5] :EndTrap

(61 ...

Now, whenever any error occurs in one of the enclosed lines, or in a function called
from one of the lines, processing stops immediately and control is transferred to the
line following the : EndTrap. The 0 argument to : Trap, in this case represents any
error. To trap only specific errors, you could use a vector of error numbers:

[2] :Trap 11 2 3

Notice that in this case, no extra lines are executed after an error. Control is passed to
line [6] either when an error has occurred, or if all the lines have been executed
without error. If you want to execute some code only after an error, you could re-
code the example like this:

Chapter 6: Error Trapping 234

[2] :Trap O

(4] ce

[5] :Else

[6] e

[7] e

[8] :EndTrap

[9] e

Now, if an error occurs in lines [3-4], (or in a function called from those lines),
control will be passed immediately to the line following the : E l se statement. On
the other hand, if all the lines between : Trap and : E l se complete successfully,
control will pass out of the control structure to (in this case) line [9].

The final refinement is that specific error cases can be accommodated using : Case
[Ldist] constructs in the same manner as the : Se lect control structure.

[1] :Trap 17+121 A Component file errors.
[2] tie<name [ftie 0 A Try to tie file

[3] 'OK'

[4] :Case 22

[5] 'Can''t find ',name

[6] :Caselist 25+113

[7] 'Resource Problem'

[8] :Else

[9] ‘Unexpected Problem'

[10] :EndTrap
Note that : Trap can be used in conjunction with JSIGNAL described below.

Traps can be nested. In the following example, code in the inner trap structure
attempts to tie a component file, and if unsuccessful, tries to create one. In either
case, the tie number is then passed to function ProcessF i Le. If an error other than
22 (FILE NAME ERROR) occurs in the inner trap structure, or an error occurs in
function ProcessF i Lle (or any of its called function), control passes to line
immediately to line [9].

[1] :Trap O

[2] :Trap 22

[3] tie<name [ftie 0
[4] :Else

[5] tie<name [fcreate 0
[6] :EndTrap

[7] ProcessFile tie

[8] :Else

[9] ‘Unexpected Error'

[10] :EndTrap

Chapter 6: Error Trapping 235

Trap System Variable: JTRAP

The second way of trapping errors is to use the system variable: [JTRAP.

OTRAP, can be assigned a nested vector of trap specifications. Each trap
specification is itself a nested vector, of length 3, with each element defined as:

list of error

The error numbers we are interested in.
numbers

Either 'E' (Execute) or ' C' (Cut Back). There are

action code
others, but they are seldom used.

APL expression, usually a branch statement or a call to an

action to be taken APL function.

So a single trap specification may be set up as:
OTRAP«5 'E' 'ACTION1'
and a multiple trap specification as:

OTRAP«(5 "E' 'ACTION1')((1 2 3) 'C' 'ACTION2')

The action code E tells APL that you want your action to be taken in the function in
which the error occurred, whereas the code C indicates that you want your action to
be taken in the function where the JTRAP was localised. If necessary, APL must
first travel back up the state indicator (cut-back) until it reaches that function.

Example Traps
Dividing by Zero

Let's try setting a JTRAP on DOMAIN ERROR:

MSG«'''Please give a non-zero right arg'''
OTRAP<«11 'E' MSG

When we enter:
10+0

APL executes the expression, and notes that it causes an error number 11. Before
issuing the standard error, it scans its JTRAP table, to see if you were interested
enough in that error to set a trap; you were, so APL executes the action specified by
you:
10+0
Please give non-zero right arg

Chapter 6: Error Trapping 236

Let's reset our [JTRAP:
OTRAP<0pTRAP A No traps now set
and write a defined function to take the place of the primitive function +:

V R«A DIV B
[1] R<A+B
[2] v

Then run it:

10 DIV O
DOMAIN ERROR
DIV[1] R«A=B
A

Let's edit our function, and include a localised [JTRAP:

V R«A DIV B;[TRAP
[1] A Set the trap
[2] OTRAP«11 'E' '-ERR1'
[3] A Do the work; if it results in error 11,
[4] A execute the trap

[5] R«<A=+B
[6] a ALL OK if we got to here, so exit
(7] =0

[8] a Will get here only if error 11 occurred
[9] ERRL1:'Please give a non-zero right arg'
\'

Running the function with good and bad arguments has the desired effect:

10 DIV 2

10 DIV O
Please give a non-zero right arg

OTRAP is a variable like any other, and since it is localised in DIV, it is only
effective in DIV and any other functions that may be called by DIV. So

10+0
DOMAIN ERROR
10+0

A

still gives an error, since there is no trap set in the global environment.

Chapter 6: Error Trapping

237

Other Errors

What happens to our function if we run it with other duff arguments:

123 DIVLHS
LENGTH ERROR
DIV [4] R<«A=B
A

Here is an error that we have taken no account of.

Change DIV to take this new error into account:

V R«A DIV B;[TRAP
[1] na Set the trap
[2] OTRAP«(11 'E' '-ERR1')(5 'E' '-ERR2')
[3] @A Do the work; if it results in error 11,
[+] A execute the trap
[5] R<A + B
[6] na ALL OK if we got to here, so exit
[7] -0
[8] A Will get here only if error 11 occurred
[9] ERRi:'Please give a non-zero right arg'o-0
[10] A Will get here only if error 5 occurred
[11] ERR2:'Arguments must be same length'

\'

JRESET

123 DIV LS
Arguments must be the same length

But here's yet another problem that we didn't think of:

(2 3p16) DIV (2 3 4pi2k)
RANK ERROR
DIV [4] R«A=B
A

Global Traps

Often when we are writing a system, we can't think of everything that may go wrong

ahead of time; so we need a way of catching "everything else that I may not have

thought of"". The error number used for "everything else" is zero:
JRESET

Set a global trap:
OTRAP <« 0 'E' ' ''Invalid arguments'' '

Chapter 6: Error Trapping 238

And run the function:

(2 3p16) DIV (2 3 4pi2k)
Invalid arguments

In this case, when APL executed line 4 of our function DIV, it encountered an error
number 4 (RANK ERROR). It searched the local trap table, found nothing relating to
error 4, so searched further up the stack to see if the error was mentioned anywhere
else. It found an entry with an associated Execute code, so executed the appropriate
action AT THE POINT THAT THE ERROR OCCURRED. Let's see what's in the
stack:

)SI
DIV[4]*

+(JOM
RANK ERROR
DIV[4] R<«A=B
A

So although our action has been taken, execution has stopped where it normally
would after a RANK ERROR.

Dangers

We must be careful when we set global traps; let's call the non-existent function
BUG whenever we get an unexpected error:

JRESET
OTRAP <« 0 'E' 'BUG'
(2 3p16) DIV (2 3 4pi2k)

Nothing happens, since APL traps a RANK ERROR on line 4 of DIV, so executes the
trap statement, which causes a VALUE ERROR, which activates the trap action,

which causes a VALUE ERROR, which etc. etc. If we had also chosen to trap on
1000 (ALL INTERRUPTS), then we'd be in trouble!

Let's define a function BUG:

vV BUG

[1] A Called whenever there is an unexpected error
[2] "xxx UNEXPECTED ERROR OCCURRED IN: ',>14[]SI
[3] "xxx PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
(4] "xxx WORKSPACE SAVED AS BUG.',>14[]SI

[5] A Tidy up ... reset [LX, untie files ... etc
[6] OSAVE 'BUG.',>1¢[SI

[7] "xxx LOGGING YOU OFF THE SYSTEM'

[8] OoFF

Chapter 6: Error Trapping 239

Now, whenever we run our system and an unexpected error occurs, our BUG function
will be called.

10 DIV O
Please give non-zero right arg

(2 3p16) DIV (2 3 4p112)

x%x% UNEXPECTED ERROR OCCURRED IN: DIV

xxx PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
x%xx WORKSPACE SAVED AS BUG.DIV

xxx LOGGING YOU OFF THE SYSTEM'

The system administrator can then load BUG.DIV, look at the SI stack, discover the
problem, and fix it.

Looking out for Specific Problems

In many cases, you can of course achieve the same effect of a trap by using APL
code to detect the problem before it happens. Consider the function TIEAFILE,
which checks to see if a file already exists before it tries to access it:

V R«TIEAFILE FILE;FILES
[1] A Tie file FILE with next available tie number
[2] =~
[3] A AlLL files in my directory
[4] FILES<JFLIB 'mydir'
[5] n Remove trailing blanks
[6] FILES«dbr " VFILES
[7] @ Required file in list?
[8] >ERRx1~(cFILE)eFILES
[9] A Tie file with next number
] FILE OFTIE R«1+[/0,JFNUMS
11] A ... and exit
] ~0

] A Error message

14] ERR:R<«'File does not exist'

Chapter 6: Error Trapping 240

This function executes the same code whether the file name is right or wrong, and it
could take a while to get all the file names in your directory. It would be neater, and
more efficient to take action ONLY when the file name is wrong:

V R<TIEAFILE FILE;0TRAP

[1] A Tie file FILE with next available tie number
[2] n
[3] A Set trap

[4] OTRAP«22 'E' '-ERR'

[5] A Tie file with next number
[6] FILE OFTIE R«1+[/0,[JFNUMS
[7] A ... and exit if OK

[8] -0

[9] A Error message

[10] ERR:R<«'File does not exist'

Cut-Back versus Execute

Let us consider the effect of using Cut-Back instead of Execute. Consider the system
illustrated below, in which the function REPORT gives the user the option of 4
reports to be generated:

REPORT
|
I I I I
REP1 REP2 REP3 REPY
|
I I I
DIV

V REPORT;OPTIONS;OPTION;[TRAP

[1] A Driver functions for report sub-system. If an
[2] A unexpected error occurs, take action in the
[3] @A function where the error occurred

[4] ~n

[5] n Set global trap

[6] OTRAP<0 'E' 'BUG'

[7] n Available options

[8] OPTIONS<«'REP1' 'REP2' 'REP3' 'REPY4'
[9] A Ask user to choose

[10] LOOP:-ENDx10=pOPTION«MENU OPTIONS
[11] A Execute relevant function

[12] &OPTION

[13] A Repeat until EXIT

[14] -~LOOP

[15] A Now end

[16] END:

Chapter 6: Error Trapping 241

Suppose the user chooses REP 3, and an unexpected error occurs in DIV. The good
news is that the System Administrator gets a snapshot copy of the workspace that he
can play about with:

JLOAD BUG.DIV A Load workspace

)SI A Where did error occur?
DIV[4]x*
REP3[6]

¢
REPORT([7]

+00DM A What happened?
RANK ERROR
DIV[4] R<«A=B
A

v A Edit function on top of stack
[0]R«A DIV B

The bad news is, our user is locked out of the whole system, even though it may only
be REP3 that has a problem. We can get around this by making use of the CUT-
BACK action code.

V REPORT;OPTIONS;OPTION;[ITRAP

[1] A Driver functions for report sub-system. If an
[2] A unexpected error occurs, cut the stack back
[3] A to this function, then take action

[4] m

[5] A Set global trap

[6] [OTRAP<«0 'C' '-ERR'

[7] A Available options

[8] OPTIONS<«'REP1' 'REP2' 'REP3' 'REPYH'
[9] A Ask user to choose

[10] LOOP:-ENDx10=pOPTION«MENU OPTIONS
[11] A Execute relevant function
[12] &OPTION

[13] A Repeat until EXIT
[14] -LOOP

[15] A Tell user ...

[16] ERR:MESSAGE 'Unexpected error in',OPTION
[17] A ... what's happening

[18] MESSAGE'Removing from Llist'

[19] A Remove option from Llist

[20] OPTIONS<«~OPTIONS~cOPTION

[21] A And repeat

[22] -LOOP

[23] m End

[24] END:

Chapter 6: Error Trapping 242

Suppose the user runs this version of REPORT and chooses REP 3. When the
unexpected error occurs in DIV, APL will check its trap specifications, and see that
the relevant trap was set in REPORT with a cut-back code. APL therefore cuts back
the stack to the function in which the trap was localised, THEN takes the
specified action. Looking at the SI stack above, we can see that APL must jump out
of DIV, then REP3, then ¢, to return to line 7 of REPORT; THEN it takes the
specified action.

Signalling Events

It would be useful to be able to employ the idea of cutting back the stack and taking
an alternative route through the code, when a condition other than an APL error
occurs. To achieve this, we must be able to trap on errors other than APL errors, and
we must be able to define these errors to APL. We do the former by using error
codes in the range 500 to 999, and the latter by using [JSTGNAL.

Consider our system; ideally, when an unexpected error occurs, we want to save a
snapshot copy of our workspace (execute BUG in place), then immediately jump back
to REPORT and reduce our options. We can achieve this by changing our functions a
little, and using [JSTGNAL:

V REPORT;OPTIONS;OPTION;[JTRAP

Driver functions for report sub-system. If an
unexpected error occurs, make a snapshot copy
of the workspace, then cutback the stack to
this function, reduce the option list & resume
Set global trap

[6] [OTRAP«(500 'C' '-ERR')(O 'E' 'BUG'")

[7] A Available options

[8] OPTIONS«'REP1' 'REP2' 'REP3' 'REPH'

[9] A Ask user to choose

[10] LOOP:-ENDx10=pOPTION«MENU OPTIONS
[11] A Execute relevant function
[12] +OPTION

[13] A Repeat until EXIT
[14] ->LOOP

[15] A Tell user ...

[16] ERR:MESSAGE 'Unexpected error in',OPTION
[17] a ... what's happening
[
[
[
[
[
[
[

~—

w

—
DDOXDO®DODDO

18] MESSAGE'Removing from Llist'
19] A Remove option from list
20] OPTIONS<«OPTIONS~cOPTION

21] A And repeat

22] ->LOOP

23] A End

24] END:

Chapter 6: Error Trapping 243

vV BUG
[1] A Called whenever there is an unexpected error
[2] "xxx UNEXPECTED ERROR OCCURRED IN: ',o14[]SI
[3] "xxx PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
[4] "xxx WORKSPACE SAVED AS BUG.',o14[]SI
[5] A Tidy up ... reset [LX, untie files ... etc
[6] [OSAVE 'BUG.',>14[SI
[71] "xxx RETURNING TO DRIVER FOR RESELECTION'
[8] [OSIGNAL 500

\'

Now when the unexpected error occurs, the first trap specification catches it, and the
BUG function is executed in place. Instead of logging the user off as before, an
error 500 is signalled to APL. APL checks its trap specifications, sees that 500
has been set in REPORT as a cut-back, so cuts back to REPORT before branching to
ERR.

Flow Control

Error handling, which employs a combination of all the system functions and
variables described, allows us to dynamically alter the flow of control through our
system, as well as allow us to handle errors gracefully. It is a very powerful facility,
which is simple to use, but is often neglected.

Handling Unexpected Application Errors in
Windows

When running an APL application, it is possible that an unexpected error will occur.

It is advisable to set a trap at the top level of the application which traps all possible
errors; in this way the programmer can cater for any errors that are not already
explicitly trapped by, for example, writing information to a file, or saving the
workspace. On UNIX in particular it may also be useful to call JOF F with a positive
integer to the right of the [JOFF - this is used as the exit code to APL.

It is also possible to generate an error which it is not possible to trap in APL code;
examples include attempting to access the session in a runtime APL, or generating an
error which causes APL to crash (for example, by the incorrect use of a shared
library function).

By default in such cases, APL will pop up a message box, and cannot continue until
the user selects the OK button.

It is possible to override this behaviour by setting the configuration parameter
DYALOG_NOPOPUPS to 1. This will cause system popups to be suppressed; it does
not suppress application popups generated by APL code.

Chapter 6: Error Trapping 244

With DYALOG_NOPOPUPS=1 APL will terminate silently, except that an aplcore
file will be generated. The location of the aplcore file can be controlled by the
configuration parameter APLCoreName. It may be more useful to ask the operating
system to handle the unexpected termination of the APL process, for example, by
bringing up a debugger, or Dr Watson. This can be achieved by setting the
configuration parameter PassExceptionsToOpSys to 1. In most cases it is
useful to set DYALOG_NOPOPUPS=1 too.

It is also possible to log such events to the Windows Event Log. Setting the
configuration parameter DYALOG_EVENTLOGGINGLEVEL to a value greater than 0
will cause this to happen. If the configuration parameter DYALOG_EVENTLOGNAME
is not set, then an event log called Dyalog will be created which can be viewed from
the Windows Event Viewer. The first time that such an event occurs the following
entries will be added to the Windows registry:

The key HKEY LOCAL
MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Dyalog APL with values

Value Name Value
Sources Dyalog APL
MaxSize 150000000

The key HKEY LOCAL _
MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Dyalog APL\Dyalog APL
with values

Value Name Value

EventMessageFile DYALOG\dyalog.exe
CategoryMessageFile | DYALOG\dyalog.exe

Category Count 5

TypesSupported 7

where DYALOG is the directory where Dyalog APL is installed.

If DYALOG_EVENTLOGNAME is set, it should contain the name of the log to which
events will be logged. For example

DYALOG EVENTLOGNAME="MyApp Event Log"

When set, no registry entries are added by Dyalog, but if the above registry entries
have been manually created, the events will be logged to an event log which has the
name "MyApp Event Log". If the registry entries described above have not been
created, the events will instead be logged into the Application Log, and the Event
Viewer will display text similar to the following when events are viewed:

Chapter 6: Error Trapping 245

The description for Event ID (1) in Source (MyApp Event Log) cannot be found.
The local computer may not have the necessary registry information or message DLL
files to display messages from a remote computer. You may be able to use the
/AUXSOURCE= flag to retrieve this description, see Help and Support for details.
The following information is part of the event: Syserror: 995 code: 2 Aplcore
"aplcorel" has been created.

Chapter 6: Error Trapping 246

Chapter 7: Error Messages 247

Chapter 7:

Error Messages

Introduction

The error messages reported by APL are described in this section. Standard APL
messages that provide information or report error conditions are summarised in APL
Error Messages on page 248 and described later in alphabetical order.

APL also reports messages originating from the Operating System (WINDOWS or
UNIX) which are summarised in Typical Operating System Error Messages on page
251 and Windows Operating System Messages on page 252. Only those Operating
System error messages that might occur through normal usage of APL operations are
described here. Other messages could occur as a direct or indirect consequence of
using the Operating System interface functions [JCMD and [JSH or system commands

)CMD and) SH, or when a non-standard device is specified for the system functions
OARBIN or JARBOUT. Refer to the WINDOWS or UNIX reference manual for
further information about these messages.

Most errors may be trapped using the system variable JTRAP, thereby retaining
control and inhibiting the standard system action and error report. The table,
Language Reference Guide: Trappable Event Codes identifies the error code for
trappable errors. The error code is also identified in the heading block for each error
message when applicable.

See Dyalog Programming Reference Guide for a full description of the Error
Handling facilities in Dyalog APL.

Chapter 7: Error Messages

248

APL Errors

Table 1: APL Error Messages

Error Code

Report

bad ws

cannot create name

clear ws

copy incomplete

defn error

incorrect command

insufficient resources

is name

Name already exists

name is not a ws

name saved date/time

Namespace does not exist

not copied name

not found name

not saved this ws is name

Sys error number

too many names

warning duplicate Llabel

warning duplicate name

warning label name present in line 0

warning pendent operation

warning unmatched brackets

warning unmatched parentheses

was name

ws not found

ws too large

Chapter 7: Error Messages 249

Error Code Report

1 WS FULL

2 SYNTAX ERROR

3 INDEX ERROR

L4 RANK ERROR

5 LENGTH ERROR

6 VALUE ERROR

7 FORMAT ERROR

10 LIMIT ERROR

11 DOMAIN ERROR

12 HOLD ERROR

16 NONCE ERROR

18 FILE TIE ERROR

19 FILE ACCESS ERROR

20 FILE INDEX ERROR

21 FILE FULL

22 FILE NAME ERROR

23 FILE DAMAGED

24 FILE TIED

25 FILE TIED REMOTELY

26 FILE SYSTEM ERROR

28 FILE SYSTEM NOT AVAILABLE
30 FILE SYSTEM TIES USED UP
31 FILE TIE QUOTA USED UP

32 FILE NAME QUOTA USED UP
34 FILE SYSTEM NO SPACE

35 FILE ACCESS ERROR - CONVERTING FILE
38 FILE COMPONENT DAMAGED

52 FIELD CONTENTS RANK ERROR
53 FIELD CONTENTS TOO MANY COLUMNS

Chapter 7: Error Messages

250

Error Code Report

54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH
57 FIELD TYPE/BEHAVIOUR UNRECOGNISED
58 FIELD ATTRIBUTES RANK ERROR
59 FIELD ATTRIBUTES LENGTH ERROR
60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

72 NO PIPES

76 PROCESSOR TABLE FULL

84 TRAP ERROR

90 EXCEPTION

92 TRANSLATION ERROR

99 INTERNAL ERROR

1003 INTERRUPT

1005 EOF INTERRUPT

1006 TIMEOUT

1007 RESIZE

1008 DEADLOCK

Chapter 7: Error Messages 251

Operating System Error Messages

Table 2 refers to UNIX Operating Systems under which the error code reported by
Dyalog APL is (100 + the UNIX file error number). The text for the error message,
which is obtained by calling perror (), will vary from one type of system to

another.

Table 3 refers to the equivalent error messages under Windows.

Table 2: Typical Operating System Error Messages

Error Code | Report

101 FILE ERROR 1 Not owner

102 FILE ERROR 2 No such file or directory
103 FILE ERROR 3 No such process

104 FILE ERROR 4 Interrupted system call
105 FILE ERROR 5 I/O error

106 FILE ERROR 6 No such device or address
107 FILE ERROR 7 Arg list too long

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

110 FILE ERROR 10 No children

111 FILE ERROR 11 No more processes

112 FILE ERROR 12 Not enough code

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Bad address

115 FILE ERROR 15 Block device required
116 FILE ERROR 16 Mount device busy

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device Llink

119 FILE ERROR 19 No such device

120 FILE ERROR 20 Not a directory

121 FILE ERROR 21 Is a directory

Chapter 7: Error Messages

252

Error Code

Report

122

FILE ERROR 22 Invalid argument

123

FILE ERROR 23 File table overflow

124

FILE ERROR 24 Too many open files

125

FILE ERROR 25 Not a typewriter

126

FILE ERROR 26 Text file busy

127

FILE ERROR 27 File too large

128

FILE ERROR 28 No space left on device

129

FILE ERROR 29 Illegal seek

130

FILE ERROR 30 Read-only file system

131

FILE ERROR 31 Too many Llinks

132

FILE ERROR 32 Broken pipe

133

FILE ERROR 33 Math argument

134

FILE ERROR 34 Result too large

Windows Operating System Error Messages

Table 3: Windows Operating System Messages

Error Code

Report

101

FILE ERROR 1 No such file or directory

102

FILE ERROR 2 No such file or directory

103

FILE ERROR Exec format error

105

FILE ERROR Not enough memory

106

107

FILE ERROR Argument Llist too big

108

3
5
FILE ERROR 6 Permission denied
7
8

FILE ERROR Exec format error

109

FILE ERROR 9 Bad file number

111

FILE ERROR 11 Too many open files

112

FILE ERROR 12 Not enough memory

113

FILE ERROR 13 Permission denied

114

FILE ERROR 14 Result too large

Chapter 7: Error Messages

253

115 FILE ERROR 15 Resource deadlock would occur
117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

133 FILE ERROR 33 Argument too large

134 FILE ERROR 34 Result too large

145 FILE ERROR 45 Resource deadlock would occur

APL Error Messages

There follows an alphabetical list of error messages reported from within Dyalog

APL.

bad ws

This report is given when an attempt is made to) COPY or)PCOPY from a file that
is not a valid workspace file. Invalid files include workspaces that were created by a
version of Dyalog APL later than the version currently being used.

cannot create nhame

This report is given when an attempt is made to) SAVE a workspace with a name
that is either the name of an existing, non-workspace file, or the name of a workspace
that the user does not have permission to overwrite or create.

clear ws

This message is displayed when the system command) CLEAR is issued.

Example

clear ws

Chapter 7: Error Messages 254

copy incomplete

This report is given when an attempted) COPY or)PCOPY fails to complete.
Reasons include:

Failure to identify the incoming file as a workspace.
Not enough active workspace to accommodate the copy.

DEADLOCK

1008

If two threads succeed in acquiring a hold of two different tokens, and then each asks
to hold the other token, they will both stop and wait for the other to release its token.
The interpreter detects such cases and issues an error (1008) DEADLOCK.

defn error

This report is given when either:

The system editor is invoked in order to edit a function that does not exist, or
the named function is pendent or locked, or the given name is an object other
than a function.

The system editor is invoked to define a new function whose name is already
active.

The header line of a function is replaced or edited in definition mode with a
line whose syntax is incompatible with that of a header line. The original
header line is re-displayed by the system editor with the cursor placed at the
end of the line. Back-spacing to the beginning of the line followed by line-
feed restores the original header line.

Examples
X<1
vX
defn error
vFoo[o]
[0] R<FOO
[0] R«<FOO: X
defn error
[0] R<FOO0: X
[JLOCK'FOOQ'
vFoo[O]
defn error

Chapter 7: Error Messages 255

DOMAIN ERROR 11

This report is given when either:

e An argument of a function is not of the correct type or its numeric value is
outside the range of permitted values or its character value does not constitute
valid name(s) in the context.

e An array operand of an operator is not an array, or it is not of the correct type,
or its numeric value is outside the range of permitted values. A function
operand of an operator is not one of a prescribed set of functions.

o A value assigned to a system variable is not of the correct type, or its numeric
value is outside the range of permitted values

e The result produced by a function includes numeric elements which cannot be
fully represented.

Examples

1+0
DOMAIN ERROR

1+0

A

(xo'CAT')2 4 6

DOMAIN ERROR
(xo'CAT')2 & 6
A

010<5

DOMAIN ERROR
010+5
A

EOF INTERRUPT 1005

This report is given on encountering the end-of-file when reading input from a file.
This condition could occur when an input to APL is from a file.

EXCEPTION 90

This report is given when a Microsoft .NET object throws an exception. For details
see Language Reference Guide: Exception System Function.

Chapter 7: Error Messages 256

FIELD CONTENTS RANK ERROR 52

This report is given if a field content of rank greater than 2 is assigned to [JSM.

FIELD CONTENTS TOO MANY COLUMNS 53

This report is given if the content of a numeric or date field assigned to [JSM has
more than one column.

FIELD POSITION ERROR 54

This report is given if the location of the field assigned to [JSM is outside the screen.

FIELD CONTENTS TYPE MISMATCH 56

This report is given if the field contents assigned to [JSM does not conform with the
given field type, for example, character content with numeric type.

FIELD TYPE BEHAVIOUR UNRECOGNISED 57

This report is given if the field type or behaviour code assigned to [1SM is invalid.

FIELD ATTRIBUTES RANK ERROR 58

This report is given if the current video attribute assigned to [JSM is non-scalar but its
rank does not match that of the field contents.

FIELD ATTRIBUTES LENGTH ERROR 59

This report is given if the current video attribute assigned to [JSM is non-scalar but its
dimensions do not match those of the field contents.

FULL SCREEN ERROR 60

This report is given if the required full screen capabilities are not available to JSM.
This report is only generated in UNIX environments.

Chapter 7: Error Messages 257

KEY CODE UNRECOGNISED 61

This report is given if a key code supplied to [JSR or OPFKEY is not recognised as a
valid code. It will also be generated if you attempt to generate a KeyPress event with
an invalid Input Code.

KEY CODE RANK ERROR 62

This report is given if a key code supplied to [JSR or PFKEY is not a scalar or a
vector.

KEY CODE TYPE ERROR 63

This report is given if a key code supplied to [JSR or PFKEY is numeric or nested,;
that is, is not a valid key code.

FORMAT FILE ACCESS ERROR 70

This report is given if the date format file to be used by [JSM does not exist or cannot
be accessed.

FORMAT FILE ERROR 71

This report is given if the date format file to be used by [ISM is ill-formed.

Chapter 7: Error Messages 258

FILE ACCESS ERROR 19

This report is given when the user attempts to execute a file system function for
which the user is not authorised, or has supplied the wrong passnumber. It also
occurs if the file specified as the argument to [JF ERASE or [JFRENAME is not
exclusively tied.

Examples
"SALES' OFSTIE 1

OFRDAC 1
0 4121 0
0 4137 99

X OFREPLACE 1

FILE ACCESS ERROR
X OFREPLACE 1
A

"SALES' [FERASE 1
FILE ACCESS ERROR
'SALES' [FERASE 1

A

FILE ACCESS ERROR CONVERTING

When a new version of Dyalog APL is used, it may be that improvements to the
component file system demand that the internal structure of component files must
alter. This alteration is performed by the interpreter on the first occasion that the file
is accessed. If the operating system file permissions deny the ability to perform such
a restructure, this report is given.

FILE COMPONENT DAMAGED 38

This report is given if an attempt is made to access a component that is not a valid
APL object. This will rarely occur, but may happen as a result of a previous
computer system failure. Components files may be checked using [JF CHK. See
Language Reference Guide: File Check and Repair.

Chapter 7: Error Messages 259

FILE DAMAGED 23

This report is given if a component file becomes damaged. This rarely occurs but
may result from a computer system failure. Components files may be checked using
[F CHK. See Language Reference Guide: File Check and Repair.

FILE FULL 21

This report is given if the file operation would cause the file to exceed its file size
limit or would cause the component number to exceed the maximum permitted which
is just below 2x32.

FILE INDEX ERROR 20

This report is given when an attempt is made to reference a non-existent component.

Example

OFSIZE 1
1 21 16578 4294967295

OFREAD 1 34

FILE INDEX ERROR
OFREAD 1 34
A

OFDROP 1 50

FILE INDEX ERROR
0OFDROP 1 50
A

FILE NAME ERROR 22

This report is given if:

o the user attempts to [JF CREATE using the name of an existing file.

« the user attempts to [JF TIE or JF STIE a non-existent file, or a file that is not
a component file.

o the user attempts to [JFERASE a component file or INERASE a native file
with a name other than the EXACT name that was used when the file was
tied.

Chapter 7: Error Messages 260

FILE NAME QUOTA USED UP 32

This report is given when the user attempts to execute a file system command that
would result in the User's File Name Quota (see Dyalog Programming Reference
Guide: Component Files) being exceeded.

This can occur with JFCREATE, JFTIE, JFSTIE or JFRENAME .

FILE SYSTEM ERROR 26

This report is given if an input/output (I/O) error occurs when reading from or
writing to the host file system. Contact your System Administrator.

If this occurs when the file is being written it may become damaged; it is therefore
advisable to check the integrity of the file using [JF CHK once the source of the I/O
errors has been corrected. See Language Reference Guide: File Check and Repair.

FILE SYSTEM NO SPACE 34

This report is given if the user attempts a file operation that cannot be completed
because there is insufficient disk space.

FILE SYSTEM NOT AVAILABLE 28

This error is generated if the operation system generates an unexpected error when
attempting to get a lock on a component file. See Dyalog Programming Reference
Guide: Component Files for details.

This error has been seen in Windows environments which have opportunistic locks
(aka oplocks) enabled, either on the server that is running Dyalog APL, or on a server
which has access to the same shared drives, or the disk array which contains the
shared drives. In this scenario this error is not seen consistently, but rather is
interspersed with other file-related errors. Oplocks should be disabled in
environments where shared component files are used.

This error has also been seen when attempting to use component files on

NFS mounted filesystems when the NFS lock daemon is not working properly: in
this state component file operations may just hang (but can be interrupted) rather than
this error being generated.

Chapter 7: Error Messages 261

FILE SYSTEM TIES USED UP 30

This error is generated when the maximum number of file ties for this APL instance
has been reached. See Dyalog Programming Reference Guide: Component Files for
details.

FILE TIE ERROR 18

This report is given when the argument to a file system function contains a file tie
number used as if it were tied when it is not or as if it were available when it is
already tied. It also occurs if the argument to [JF HOLD contains the names of non-
existent external variables. It does not indicate that there is a problem with the
underlying operating system's locking mechanism.

Examples

OFNAMES ,OF NUMS
SALES 1
COSTS 2
PROFIT 3

X [OFAPPEND 4
FILE TIE ERROR

X OFAPPEND 4

A

"NEWSALES' [JFCREATE 2
FILE TIE ERROR

"NEWSALES' [FCREATE 2

A

"EXTVFILE' [XT'BIGMAT'
OFHOLD 'BIGMAT'
FILE TIE ERROR
OFHOLD 'BIGMAT'
A

OFHOLD<'BIGMAT'

FILE TIED 24

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task.

Chapter 7: Error Messages 262

FILE TIED REMOTELY 25

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task;
and that task is running on other than the user's processor.

FILE TIE QUOTA USED UP 31

This error is generated if an attempt is made to JF TIE, JFSTIE or JFCREATE a
file when the user already has the maximum number of files tied. (See Dyalog
Programming Reference Guide:Component Files)

FORMAT ERROR 7

This report is given when the format specification in the left argument of system
function JFMT is ill-formed.

Example

"A1,1X,I5'[JFMT CODE NUMBER
FORMAT ERROR

"A1,1X,I5'00FMT CODE NUMBER
A

(The correct specification should be 'A1,X1,I5"')

Chapter 7: Error Messages 263

HOLD ERROR 12

This report is given when an attempt is made to save a workspace using the system
function [JSAVE if any external arrays or component files are currently held (as a
result of a prior use of the system function (JFHOLD).

Example

VHOLDASAVE
[1] OFHOLD 1
[2] OSAVE 'TEST'
v

"FILE' OFSTIE 1
HOLDASAVE

HOLD ERROR
HOLDASAVE[2] [OSAVE'TEST'
A

incorrect command

This report is given when an unrecognised system command is entered.

Example

)CLERA
incorrect command

Chapter 7: Error Messages 264

INDEX ERROR 3

This report is given when either:

o The value of an index, whilst being within comparison tolerance of an integer,
is outside the range of values defined by the index vector along an axis of the
array being indexed. The permitted range is dependent on the value of [JIO.

o The value specified for an axis, whilst being within comparison tolerance of
an integer for a derived function requiring an integer axis value or a non-
integer for a derived function requiring a non-integer, is outside the range of
values compatible with the rank(s) of the array argument(s) of the derived
function. Axis is dependent on the value of (JI0.

Examples

A
1 2 3
b 56
Al1:4]
INDEX ERROR
Al1:4]

A

t+ [2]'ABC' 'DEF'
INDEX ERROR

t+ [2]'ABC' 'DEF'

A

INTERNAL ERROR 99

INTERNAL ERROR indicates that the system has reached an unexpected state from
which Dyalog APL has recovered.

Should you encounter an INTERNAL ERROR, Dyalog strongly recommends that
you save your work(space), and asks that you report the issue to Dyalog.

Chapter 7: Error Messages 265

INTERRUPT 1003

This report is given when execution is suspended by entering a hard interrupt. A
hard interrupt causes execution to suspend as soon as possible without leaving the
environment in a damaged state.

Example
11 2 &(2 100p1200)°.|?1000p200
(Hard interrupt)

INTERRUPT
112 &(2 100p1200)°.|?1000p200
A

is name

This report is given in response to the system command)WSID when used without a
parameter. name is the name of the active workspace including directory references
given when loaded or named. If the workspace has not been named, the system
reports is CLEAR WS.

Example

JWSID
is WS/UTILITY

LENGTH ERROR 5

This report is given when the shape of the arguments of a function do not conform,
but the ranks do conform.

Example

2 3+4 5 6
LENGTH ERROR

2 3+4 5 6

A

Chapter 7: Error Messages 266

LIMIT ERROR 10

This report is given when a system limit is exceeded. System limits are installation
dependent.

Example

(16p1)p1

LIMIT ERROR
(16p1)p1
A

NONCE ERROR 16

This report is given when a system function or piece of syntax is not currently
implemented but is reserved for future use.

NO PIPES 72

This message applies to the UNIX environment ONLY.

This message is given when the limit on the number of pipes communicating
between tasks is exceeded. An installation-set quota is assigned for each task. An
associated task may require more than one pipe. The message occurs on attempting
to exceed the account's quota when either:

e An APL session is started

o A non-APL task is started by the system function [JSH
e An external variable is used.

It is necessary to release pipes by terminating sufficient tasks before proceeding with
the required activity. In practice, the error is most likely to occur when using the
system function [JSH.

Examples

'via' OSH 'via'
NO PIPES

'via' [JSH 'via'

A

"EXT/ARRAY' [OXT 'EXVAR'
NO PIPES
"EXT/ARRAY' [XT 'EXVAR'
A

Chapter 7: Error Messages 267

name is not a ws

This report is given when the name specified as the parameter of the system
commands) LOAD,) COPY or)PCOPY is a reference to an existing file or directory
that is not identified as a workspace.

This will also occur if an attempt is made to) LOAD a workspace that was) SAVE’d
using a later version of Dyalog APL.

Example

JLOAD EXT\ARRAY
EXT\ARRAY is not a ws

Name already exists

This report is given when an)NS command is issued with a name which is already
in use for a workspace object other than a namespace.

Namespace does not exist

This report is given when a) CS command is issued with a name which is not the
name of a global namespace.

not copied hame

This report is given for each object named or implied in the parameter list of the
system command) PCOPY which was not copied because of an existing global
referent to that name in the active workspace.

Example

JPCOPY WS/UTILITY A FOO Z
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied Z

Chapter 7: Error Messages 268

not found name

This report is given when either:

e An object named in the parameter list of the system command) ERASE is not
erased because it was not found or it is not eligible to be erased.

e An object named in the parameter list (or implied list) of names to be copied
from a saved workspace for the system commands) COPY or)PCOPY is not
copied because it was not found in the saved workspace.

Examples

JERASE [IO
not found [JIO

)COPY WS/UTILITY UND
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not found UND

not saved this ws is name

This report is given in the following situations:

e When the system command) SAVE is used without a name, and the
workspace is not named. In this case the system reports not saved this
ws is CLEAR WS.

e When the system command) SAVE is used with a name, and that name is not
the current name of the workspace, but is the name of an existing file.

In neither case is the workspace renamed.

Examples

JCLEAR
)SAVE
not saved this ws is CLEAR WS

JWSID JOHND
)SAVE
JWSID ANDYS
)SAVE JOHND
not saved this ws is ANDYS

Chapter 7: Error Messages 269

PROCESSOR TABLE FULL 76

This report can only occur in a UNIX environment.

This report is given when the limit on the number of processes (tasks) that the
computer system can support would be exceeded. The limit is installation dependent.
The report is given when an attempt is made to initiate a further process, occurring
when an APL session is started.

It is necessary to wait until active processes are completed before the required task
may proceed. If the condition should occur frequently, the solution is to increase the
limit on the number of processes for the computer system.

Example

‘prefect' [SH 'prefect’

PROCESSOR TABLE FULL
‘prefect' [OSH 'prefect'
A

RANK ERROR 4

This report is given when the rank of an argument or operand does not conform to
the requirements of the function or operator, or the ranks of the arguments of a
function do not conform.

Example

2 3 + 2 2p10 11 12 13
RANK ERROR

2 3 + 2 2p10 11 12 13

A

RESIZE 1007

This report is given when the user resizes the [JSM window. It is only applicable to
Dyalog APL/X and Dyalog APL/W.

Chapter 7: Error Messages 270

name saved date time

This report is given when a workspace is saved, loaded or copied.
date/time is the date and time at which the workspace was most recently saved.

Examples

JLOAD WS/UTILITY
WS/UTILITY saved Fri Sep 11 10:34:35 1998

)COPY SPACES GEOFF JOHND VINCE
./SPACES saved Wed Sep 30 16:12:56 1998

Chapter 7: Error Messages 271

SYNTAX ERROR 2

This report is given when a line of characters does not constitute a meaningful
statement. This condition occurs when either:

An illegal symbol is found in an expression.

Brackets, parentheses or quotes in an expression are not matched.

Parentheses in an expression are not matched.

Quotes in an expression are not matched.

A value is assigned to a function, label, constant or system constant.

A strictly dyadic function (or derived function) is used monadically.

A monadic function (or derived function) is used dyadically.

A monadic or dyadic function (or derived function) is used without any

arguments.

o The operand of an operator is not an array when an array is required.

o The operand of an operator is not a function (or derived function) when a
function is required.

o The operand of an operator is a function (or derived function) with incorrect
valency.

o A dyadic operator is used with only a single operand.

e An operator is used without any operands.

Examples

A>10)/A

SYNTAX ERROR
A>10)/A
A

T2 4 8

SYNTAX ERROR
T2 4+ 8
A

A.+1 2 3

SYNTAX ERROR
A.+1 2 3
A

Chapter 7: Error Messages 272

sys error number

This report is given when an internal error occurs in Dyalog APL.

Under UNIX it may be necessary to enter a hard interrupt to obtain the UNIX
command prompt, or even to kill your processes from another screen. Under
WINDOWS it may be necessary to reboot your PC.

If this error occurs, please submit a fault report to your Dyalog APL distributor.

TIMEOUT 1006

This report is given when the time limit specified by the system variable [JRTL is
exceeded while awaiting input through character input ([1) or [JSR.

It is also reported by [JFHOLD if it times out.

It is usual for this error to be trapped.

Example

ORTL«5 ¢ [J«'RESPOND WITHIN 5 SECONDS: ' ¢ R+l
RESPOND WITHIN 5 SECONDS:
TIMEOUT
ORTL«5 o [I«'RESPOND WITHIN 5 SECONDS: ' o R<[]
A

TRANSLATION ERROR 92

This report is given when the system cannot convert a character from Unicode to an
Atomic Vector index or vice versa. Conversion is controlled by the value of [JAVU.
Note that this error can occur when you reference a variable whose value has been
obtained by reading data from a TCPSocket or by calling an external function. This is
because in these cases the conversion to/from [JAV is deferred until the value is used.

TRAP ERROR 84

This report is given when a workspace full condition occurs whilst searching for a
definition set for the system variable JTRAP after a trappable error has occurred. It
does not occur when an expression in a JTRAP definition is being executed.

Chapter 7: Error Messages 273

too many names

This report is given by the function editor when the number of distinct names (other
than distinguished names beginning with the symbol [J) referenced in a defined
function exceeds the system limit of 4096.

VALUE ERROR 6

This report is given when either:

o There is no active definition for a name encountered in an expression.
o A function does not return a result in a context where a result is required.

Examples

X
VALUE ERROR
X

A

vV HELLO
[1] "HI THERE'
[2] v

2+HELLO
HI THERE
VALUE ERROR

2+HELLO

A

warning duplicate label

This warning message is reported on closing definition mode when one or more
labels are duplicated in the body of the defined function. This does not prevent the
definition of the function in the active workspace. The value of a duplicated label is
the lowest of the line-numbers in which the labels occur.

Chapter 7: Error Messages 274

warning duplicate name

This warning message is reported on closing definition mode when one or more
names are duplicated in the header line of the function. This may be perfectly valid.
Definition of the function in the active workspace is not prevented. The order in
which values are associated with names in the header line is described in
Programming Reference Guide: Defined Functions & Operators.

warning pendent operation

This report is given on opening and closing definition mode when attempting to edit

a pendant function or operator.

Example
[0] VFOO
[1] GOO
(2] v
[0] VvGOO
[1] °
[2] v

FOO
SYNTAX ERROR
GOO[1] o

A

VFOO

warning pendent operation
(0] VFOO

[1] GOO

[2] v

warning pendent operation

warning label name present

This warning message is reported on closing definition mode when one or more label
names also occur in the header line of the function. This does not prevent definition
of the function in the active workspace. The order in which values are associated
with names is described in Programming Reference Guide: Defined Functions &

Operators.

Chapter 7: Error Messages 275

warning unmatched brackets

This report is given after adding or editing a function line in definition mode when it

is found that there is not an opening bracket to match a closing bracket, or vice versa,
in an expression. This is a warning message only. The function line will be accepted
even though syntactically incorrect.

Example

(3] A[;sB[:;2]«0
warning unmatched brackets

(4]

warning unmatched parentheses

This report is given after adding or editing a function line in definition mode when it
is found that there is not an opening parenthesis to match a closing parenthesis, or
vice versa, in an expression. This is a warning message only. The function line will
be accepted even though syntactically incorrect.

Example

[4] X«(E>2)"E<10)#A
warning unmatched parentheses

(5]

was name

This report is given when the system command)WSID is used with a parameter
specifying the name of a workspace. The message identifies the former name of the
workspace. If the workspace was not named, the given report is was CLEAR WS.

Example

JWSID TEMP
was UTILITY

Chapter 7: Error Messages 276

WS FULL 1

This report is given when there is insufficient workspace in which to perform an
operation. Workspace available is identified by the system constant [JWA.

The maximum workspace size allowed is defined by the environment variable
MAXWS. See Installation & Configuration Guide: maxws parameter for details.

Example

OWAp1.2

WS FULL
OWAp1.2
A

ws not found

This report is given when a workspace named by the system commands) LOAD,
)COPY or)PCOPY does not exist as a file, or when the user does not have read
access authorisation for the file.

Examples

)LOAD NOWS
ws not found

JCOPY NOWS A FOO X
ws not found

ws too large

This report is given when:

o the user attempts to) LOAD a workspace that needs a greater work area than
the maximum that the user is currently permitted.

o the user attempts to) COPY or)PCOPY from a workspace that would require
a greater work area than the user is currently permitted if the workspace were
to be loaded.

The maximum work area permitted is set using the environment variable MAXWS.

Operating System Error Messages

There follows a numerically sorted list of error messages emanating from a typical
operating system and reported through Dyalog APL.

Chapter 7: Error Messages 277

FILE ERROR 1 Not owner 101

This report is given when an attempt is made to modify a file in a way which is
forbidden except to the owner or super-user, or in some instances only to a super-
user.

FILE ERROR 2 No such file

This report is given when a file (which should exist) does not exist, or when a
directory in a path name does not exist.

FILE ERROR 51 O error 105

This report is given when a physical I/O error occurred whilst reading from or
writing to a device, indicating a hardware fault on the device being accessed.

FILE ERROR 6 No such device

This report is given when a device does not exist or the device is addressed beyond
its limits. Examples are a tape which has not been mounted or a tape which is being
accessed beyond the end of the tape.

FILE ERROR 13 Permission denied 113

This report is given when an attempt is made to access a file in a way forbidden to
the account.

FILE ERROR 20 Not a directory 120

This report is given when the request assumes that a directory name is required but
the name specifies a file or is not a legal name.

FILE ERROR 21 Is a directory 121

This report is given when an attempt is made to write into a directory.

Chapter 7: Error Messages 278

FILE ERROR 23 File table overflow 123

This report is given when the system limit on the number of open files is full and a
request is made to open another file. It is necessary to wait until the number of open
files is reduced. If this error occurs frequently, the system limit should be increased.

FILE ERROR 24 Too many open

This report is given when the task limit on the number of open files is exceeded. It
may occur when an APL session is started or when a shell command is issued to start
an external process through the system command [JSH. It is necessary to reduce the
number of open files. It may be necessary to increase the limit on the number of
open files to overcome the problem.

FILE ERROR 26 Text file busy 126

This report is given when an attempt is made to write a file which is a load module
currently in use. This situation could occur on assigning a value to an external
variable whose associated external file name conflicts with an existing load module's
name.

FILE ERROR 27 File too large 127

This report is given when a write to a file would cause the system limit on file size to
be exceeded.

FILE ERROR 28 No space left

This report is given when a write to a file would exceed the capacity of the device
containing the file.

FILE ERROR 30 Read only file

This report is given when an attempt is made to write to a device which can only be
read from. This would occur with a write-protected tape.

Chapter 7: Error Messages 279

System Errors

Introduction

Dyalog APL will generate a system error and (normally) terminate in one of two
circumstances:

e As aresult of the failure of a workspace integrity check
e As aresult of a System Exception

On Windows, if the DYALOG_NOPOPUPS parameter is 0 (the default), it will
display the System Error dialog box (see System Error Dialog Box on page 282).
This is suppressed if DYALOG_NOPOPUPS is 1.

aplcore file

When a system error occurs, APL normally saves an aplcore file which may be sent
to Dyalog for diagnosis. The name and location of the aplcore file may be specified
by the AplCoreName parameter. If this parameter is not specified, the aplcore file is
named aplcore and is saved in the current working directory.

Normally a new aplcore will replace a file of the same name. However, if
AplCoreName contains an asterisk (*), the system will create a new file, replacing
the asterisk with a number incremented from the largest numbered file present.

The number of aplcore files retained by the system is specified by the MaxAplCores
parameter. If MaxAplCores is 0, the system will not save an aplcore. However,
under Windows, if DYALOG_NOPOPUPS is 0, and the user checks the Create an
aplcore file checkbox when the System Error dialog box is displayed, an aplcore will
be saved regardless of the value of MaxAplCores. See System Error Dialog Box on

page 282.
Be aware that if your application contains any secure data, this data may be present

in an aplcore file, and it may be appropriate to set both MaxAplCores and
DYALOG_NOPOPUPS to 0 to prevent such data being saved on disk.

For further information concerning the parameters AplCoreName, DYALOG _
NOPOPUPS and MaxAplCores, see Installation and Configuration Guide.

Information that may prove useful in debugging the problem, including (where
possible) the SI stack at the point where the aplcore was generated, is by default
written to the end of aplcore files; the section begins with the string

=================== Interesting Information'

Under UNIX, this interesting information section can be extracted from the aplcore
as follows:

sed -n '/======== Interesting Information/,S$p' aplcore

Chapter 7: Error Messages 280

To prevent this information from being written to the aplcore file, the APL_
TextInAplCore parameter should be set to 0.

Workspace Integrity

When you) SAVE your workspace, Dyalog APL first performs a workspace integrity
check. If it detects any discrepancy or violation in the internal structure of your
workspace, APL does not overwrite your existing workspace on disk. Instead, it
displays the System Error dialog box and saves the workspace, together with
diagnostic information, in an aplcore file before terminating.

A System Error code is displayed in the dialog box and should be reported to Dyalog
for diagnosis. This information also appears in the Interesting Information section of
the aplcore file.

Note that the internal error that caused the discrepancy could have occurred at any
time prior to the execution of) SAVE and it may not be possible for Dyalog to
identify the cause from this aplcore file.

If APL is started in debug mode with the -Dc, -Dw or -DW flags, the Workspace
Integrity check is performed more frequently, and it is more likely that the resulting
aplcore file will contain information that will allow the problem to be identified and
corrected. It is also possible to enable or alter the debugging level from within

APL using the SetDFlags method; Dyalog support will direct the use of this feature
when necessary.

System Exceptions

Non-specific System Errors are the result of Operating System exceptions that can
occur due to a fault in Dyalog APL itself, an error in a Windows or other DLL, or
even as a result of a hardware fault. The following system exceptions are separately
identified.

Chapter 7: Error Messages 281

Code |Description Suggested Action

As the most likely cause is a temporary

900 A Paging Fault has network fault, recommended course of
occurred .o
action 1s to restart your program.
990 & An exception has occurred
991 in the Development or Run-

Time DLL.

An exception has occurred | Carefully check your [JNA statement and
995 in a DLL function called the arguments that you have passed to the
via [INA DLL function

An exception has occurred
996 in a DLL function called As above
via a threaded [NA call

An exception has occurred
997 while processing an
incoming OLE call

An exception has been
999 caused by Dyalog APL or
by the Operating System

Recovering Data from aplcore files

Objects may often (but not always) be recovered from aplcore using) COPY or [JCY.
Note that if the aplcore contains a workspace with more than one instance of the
same name on the stack, [JCY copies the most local object whereas) COPY copies the
global one.

Be aware that in many cases an attempt to) COPY from or) LOAD an aplcore is
likely to result in a further syserror; this may result in the original aplcore being
overwritten, thus losing the contents of that file. It is therefore worth while taking a
copy of the aplcore before attempting to) COPY from it. Attempting to copy specific
items is more likely to be successful than copying the entire workspace from the
aplcore.

Note that in previous versions under Windows because (by default) the aplcore file
has no extension, it was necessary to explicitly add a dot, or APL would attempt to
find the non-existent file aplcore.dws. This is no longer true in version 14.1
onwards.

Chapter 7: Error Messages 282

Reporting Errors to Dyalog

If APL crashes and saves an aplcore file, please email the following information to
support@dyalog.com:

1. a brief description of the circumstances surrounding the error

2. details of your version of Dyalog APL: the full version number, whether it is
Unicode or Classic Edition, and the BuildID. This information appears in the
Help->About box; the Copy button copies this information into the clipboard,
from where it can be pasted into an email etc.

3. acompressed form of the aplcore file itself

If the problem is reproducible, that is, can be easily repeated, please also send the
appropriate description, workspace, and other files required to do so.

System Error Dialog Box

The System Error Dialog illustrated below was produced by deliberately inducing a
system exception in the DLL function memcpy () . The functions used were:

v
(1]

v

v
(1]

v

v
[1]

v

v
[1]
[2]

v

foo
goo

goo
hoo

hoo
crash

crash
ONA'dyalog64|MEMCPY u u u'
MEMCPY 255 255 255

Note: Under a 32-bit interpreter the [INA call should refer to dyalog32.

Chapter 7: Error Messages 283

An exception has occurred in an external DLL.

In workspace CGh\Dyalogle.0M\Core\wishsyserred, dws (process 1D:3104)
Syserror: 995 code: 9

Interpreter BuildID: Oxcd3122
Interpreter Created: May 9 2017 at 18:38:00
Interpreter Version 16.0.29865.0 / &4 / Unicode

Serial Number : 000042

If you choose to generate an aplcore, it will be saved as: "COWINDOWS
“WSystem32\aplcore”,
It may be possible to retrieve local variables and other objects from this file
using JCY.

APL 5tack trace-=
#.crazh[2] MEMCPY 255 255 255
#.hoo[1] crash

#.goo[1] hoo

#.fool[1] goo

<-End of APL Stack trace

|:| Create a process dump file
|:| Create trappable error | Copy to dipboard |
Create an aplcore file

|:| Pass exception on to operating system

E antinue i

Chapter 7: Error Messages 284

Options
Item Description
Create a
process Dumps a complete core image, see below.
dump file
Create If you check this box (only enabled on System Error codes 995
Trappable and 996), APL will not terminate but will instead generate an
PP error 91 (EXTERNAL DLL EXCEPTION) when you press
Error .
Dismiss.
Create an

If this box is checked, an aplcore file will be created.
aplcore file

Pass

exception | If this box is checked, the exception will be passed on to your
on to current debugging tool (for example, Visual Studio). See
operating | Installation & Configuration Guide: PassExceptionsToOpSys.
system

Copy to Copies the contents of the APL stack trace window to the

clipboard Clipboard.

Create a process dump file

Under Windows the Create a process dump file option creates a user-mode process
dump file , also known as a minidump file, called dyalog.dmp in the current
directory. This file allows post-mortem debugging of a crash in the interpreter or a
loaded DLL. It contains much more debug information than a normal aplcore (and is
much larger than an aplcore) and can be sent to Dyalog Limited (zip it first please).
Alternatively the file can be loaded into Visual Studio .NET to do your own
debugging.

Debugging your own DLLs

If you are using Visual Studio, the following procedure should be used to debug your
own DLLs when an appropriate Dyalog APL System Error occurs.

Ensure that the Pass Exception box is checked, then click on Dismiss to close the
System Error dialog box.

The system exception dialog box appears. Click on Debug to start the process in the
Visual Studio debugger.

After debugging, the System Exception dialog box appears again. Click on Don't
send to terminate Windows' exception handling.

Chapter 7: Error Messages 285

ErrorOnExternalException Parameter

This parameter allows you to prevent APL from taking the actions described above
when an exception caused by an external DLL occurs. The following example
illustrates what happens when the functions above are run, but with the
ErrorOnExternalException parameter set to 1.

O<2 ONQ'.' 'GetEnvironment' 'ErrorOnExternalException'’
1
foo
EXTERNAL DLL EXCEPTION
crash[2] MEMCPY 255 255 255
A

QOEN
91

)SI
crash[2]x*
hoo[1]
goo[1]
fool[1]

Note: Dyalog recommends that enabling ErrorOnExternalException should only
be done while developing or debugging an application; ignoring such errors may
result in corruption in the workspace which could result to unexpected errors later in
the application.

What should | do if Dyalog hangs?

If Dyalog for Windows hangs, you should generate a process dump file and send it to
Dyalog Support, along with your Build ID.

To do this:

1. Start Task Manager (as a user who has administrative privileges)

2. Go to the Processes tab

3. Right click on the dyalog.exe process and choose Create Dump File.
Windows will create a process dump file in C: \Users\<your name
here>\AppData\Local\Temp\dyalog.DMP

4. Compress this file and send it to Dyalog. If it is less than 10 Mb in size, send
it to Dyalog Support as an email attachment. If it is more than 10 Mb, upload
it via the MyDyalog/My Account page or contact Dyalog support to request an
account on our FTP server.

Chapter 7: Error Messages 286

Symbolic Index

287

Symbolic Index

Note that the references in this table refer to
entries in the Language Reference Guide:
Contents.

See add,
+ conjugate,
plus
See minus,
- negate,
subtract
See multiply,
signum, times

See divide,
reciprocal

See matrix

5] divide, matrix
inverse
See

| magnitude,
residue

See ceiling,
maximum

1 See floor,
minimum
See

* exponential,
power

See logarithm,
® natural
logarithm

< See less
> See greater

See less or
equal

IA

v

See greater or

>t <

<t

n

- - e e

1

equal
See equal
See not equal

See depth,
match

See not
match, tally

See
excluding,
not, without

See and, caret
pointer

See or
See nand
See nor

See union,
unique

See
intersection

See enclose,
partition,
partitioned
enclose

See nest,
partition

See disclose,
mix, pick

See deal, roll

See binomial,
factorial

See grade up

See grade
down

See execute
See format
See decode
See encode

See same, left

Symbolic Index 288

vl

|m

See same,
right

See circular,
pi times

See transpose
See reverse,
rotate

See reverse
first, rotate
first

See catenate,
laminate, ravel
See catenate
first, table
See index
generator,
index of

See where,
interval index
See reshape,
shape

See enlist,
membership,
type

See find

See disclose,
mix, take

See drop, split
See
assignment
See abort,
branch

See name
separator,
decimal point,
inner product
See outer
product

See rank, atop
See over

See beside,

O HE ® M *3

>

[l

O)

bind

See compress,
replicate,
reduce

See replicate
first, reduce
first

See expand,
scan

See expand
first, scan first

See each

See commute
and constant

See spawn

See power
operator

See variant
See key

See at

See stencil
See i-beam
See zilde
See negative
sign

See underbar
character

See delta
character

See delta-
underbar
character

See quotes
See index,
axis

See indexing,
axis

See
parentheses

Symbolic Index

289

{}

ool

ww

#

\A%

:AndIf
:Access
:Case
:Caselist
:Class
:Continue
:Else

tElself

See braces
See left
argument
See left
operand

See right
argument
See right
operand

See Root
object

See parent
object

See statement
separator

See comment
symbol

See function
self, del editor
See operator
self

See name
separator,
array separator
See label
colon

See and if
condition

See access
statement
See case
qualifier
See caselist
qualifier
See class
statement
See continue
branch

See else
qualifier
See else-if
condition

:End
:EndClass
:EndFor
:EndHold
tEndIf

:EndNamespace

:EndProperty

:EndRepeat
:EndSelect
:EndTrap
:EndWhile
:EndWith
:Field
:For

:GoTo
:Hold
:Include

tIf

:Implements

:In

See general
end control
See endclass
statement

See end-for
control

See end-hold
control

See end-if
control

See
endnamespace
See
endproperty
statement

See end-repeat
control

See end-select
control

See end-trap
control

See end-while
control

See end-with
control

See field
statement

See for
statement

See go-to
branch

See hold
statement

See include
statement

See if
statement

See
implements
statement

See in control

Symbolic Index 290

:InEach
:Interface

:Leave

:Namespace

:0rIf
:Property
:Repeat
:Require
:Return
:Section
:Select
:Trap
:Until
:While

:With

OA
OAI

See ineach
control

See interface
statement

See leave
branch

See
namespace
statement
See or-if
condition
See property
statement
See repeat
statement
See require
statement
See return
branch

See section
statement
See select
statement
See trap
statement
See until
condition
See while
statement
See with
statement
See quote-
quad,
character IN\O
See quad,
evaluated \O
See
underscored
alphabet

See alphabet

See account
information

OAN

OARBIN

OARBOUT
OAT
OAv

OAavu

0BASE
0c
OCLASS

OCLEAR

dcMD

cr

gcs

gcsv

gct

gcy
0o

gocTt

or

See account
name

See arbitrary
input

See arbitrary
output

See attributes

See atomic
vector

See atomic
vector -
unicode

See base class

See case
convert

See class

See clear
workspace

See execute
Windows
command,
start AP

See canonical
representation

See change
space

See comma
separated
values

See
comparison
tolerance

See copy
workspace
See digits
See decimal
comparison
tolerance
See display
form

Symbolic Index 291

ao1v
0oL

(oM™

aoQ

bR
[)

OeM

OEN

OeX
OEXCEPTION

OEXPORT

OF APPEND

OFAVAIL

OF CHK

drcory
OFCREATE

0OFDROP

OFERASE
OFHOLD

OFHIST

OFIX
OFLIB
OFMT
OFNAMES

OF NUMS

See division
method

See delay

See diagnostic
message

See dequeue
events

See data
representation

See edit object

See event
message

See event
number

See expunge
object
See exception

See export
object

See file
append
component

See file
available

See file check
and repair

See file copy
See file create

See file drop
component

See file erase
See file hold

See file
history

See fix script
See file library
See format

See file names

See file
numbers

OFPROPS

OFr

OFRDAC

OFRDCI

OFREAD

OFRENAME

OFREPLACE
OFRESIZE
OFSIzZE

OFSTAC

OFSTIE

OFTIE
OFUNTIE

OfFXx
OINSTANCES

gIo

(0JSoN
OKL

gLc

0LOAD

dLock

See file
properties

See floating-
point
representation

See file read
access matrix

See file read
component
information

See file read
component

See file
rename

See file
replace
component

See file resize
See file size

See file set
access matrix

See file share
tie

See file tie
See file untie
See fix
definition
See instances
See index
origin

See json
convert

See key label
See line
counter

See load
workspace

See lock
definition

Symbolic Index

292

OLx
OMAP

OMKDIR

OML
OMONITOR

0ONA

ONAPPEND

ONC

ONCOPY

ONCREATE

ONDELETE

ONERASE

ONEW

ONEXISTS

ONGET

ONINFO
ONL

ONLOCK

ONMOVE

ONNAMES

ONNUMS

ONPARTS
ONPUT

See latent
expression
See map file
See make
directory

See migration
level

See monitor
See name
association

See native file
append

See name
class

See native file

copy
See native file
create

See native file
delete

See native file
erase

See new
instance

See native file
exists

See read text
file

See native file
information

See name list

See native file
lock

See native file
move

See native file
names

See native file
numbers

See file parts

See write text

ONQ

ONR

ONREAD

ONRENAME

ONREPLACE

ONRESIZE

ONS

ONSI

ONSIZE

ONTIE
ONuLL

ONUNTIE

ONXLATE

OOFF
aopT

0or

OPATH

OPFKEY

app

OPROFILE

file

See enqueue
event

See nested
representation

See native file
read

See native file
rename

See native file
replace

See native file
resize

See
namespace

See
namespace
indicator

See native file
size

See native file
tie

See null item

See native file
untie

See native file
translate

See sign off
APL

See variant
See object
representation
See search
path

See program
function key
See print
precision
See profile
application

Symbolic Index 293

apw
OrR
OREFS

OrRL

ORrRSI

ORTL
as
OSAVE

gso

Ose

0SH

OSHADOW

gsI

OSIGNAL

OSIzZe

OsMm

Osr
OSRC

OSTACK

OSTATE

gsTop

See print
width
See replace

See cross
references

See random
link

See space
indicator
See response
time limit
See search
See save
workspace
See screen
dimensions
See session
namespace
See execute
shell
command,
start AP
See shadow
name

See state
indicator
See signal
event

See size of
object

See screen
map

See screen
read

See source
See state
indicator stack
See state of
object

See stop
control

gsvc

gsvo

asvQ

OSVR

asvs

aTc

OTCNUMS

OTGET
OTHIS

gTIio
OTKILL

OTNAME

OTNUMS

gTpooL
gTpuT

OTRACE
OTRAP
OTREQ
ars

OTSYNC

ducs
OUSING

OVFI

See shared
variable
control

See shared
variable offer

See shared
variable query

See shared
variable
retract

See shared
variable state

See terminal
control

See thread
child numbers

See get tokens
See this space
See thread
identity

See thread kill

See thread
name

See thread
numbers

See token pool
See put tokens

See trace
control

See trap event

See token
requests

See timestamp

See threads
synchronise

See unicode
convert

See using path

See verify and
fix input

Symbolic Index

294

Ovr

OwWA

Owc

OweG

OWN

Ows

OWSID

Owx

OXML

OxsI

OxT
)CLASSES
)CLEAR

) CMD

)JCONTINUE

)COPY

)CS

)DROP
JED
)ERASE
)EVENTS
)FNS

JHOLDS

See vector
representation

See workspace
available

See window
create object

See window
get property
See window
child names
See window
set property
See workspace
identification

See window
€Xpose names

See xml
convert

See extended
state indicator

See external
variable

See list classes

See clear
workspace

See command

See continue
off

See copy
workspace

See change
space

See drop
workspace

See edit object

See erase
object

See list events

See list
functions

See held

JLIB

)LOAD

JMETHODS

INS

JOBJECTS

)OBS

)OFF

)OPS

)PCOPY

)PROPS

JRESET

) SAVE

)SH

)SI

)SINL

)TID

)JVARS

JWSID

) XLOAD

tokens

See workspace
library

See load
workspace
See list
methods

See
namespace
See list
objects

See list
objects

See sign off
APL

See list
operators

See protected
copy

See list
properties

See reset state
indicator

See save
workspace
See shell
command

See state
indicator

See state
indicator name
See thread
identity

See global
defined
variables

See workspace
identity

See quiet-load
workspace

Index

295

Index

A

access statement 71, 145, 190
Access Statement 185
ambivalent functions 17, 64
and-if condition 75
APL
arrays 3
component files 61
error messages 253
expressions 16
functions 17
line editor 18, 97
operators 19
quotes 5
statements 65
APL files 213
APL TextInAplCore parameter 280
aplcore 279-280
aplcorename parameter 279
aplnid parameter 215
arguments 63
arguments of functions 17
array expressions 16
arrays 3
boxing user command 12
depth of 3
display of 8
display user command 11
enclosed 5
matrix 3
multi-dimensional 3
of namespace references 51
rank of 3
scalar 3
shape of 3
type of 3
vector 3
assignment
distributed 53

function 18
atomic vector - unicode 272
atop 23
attribute statement 72, 184
auxiliary processors 61

B

bad ws 253
base class 121, 123, 182
base constructor 133
binary integer decimal 41
binding strength 21
body

of function 18

of operator 20
boxing user command 12
braces 18
branch arrow 93
branch statements

branch 93

continue 94

goto 93

leave 94

return 94

C

callback functions run as threads 196

cannot create name 253
case-list qualifier 75
case qualifier clause 85
cells 14
character arrays 5
characters 5
circular functions 36
class statement 182
classes

base class 121, 123, 182

constructors 124-125, 131, 133, 136

defining 122

derived from .NET Type 124
derived from GUI 124
destructor 131, 137

editing 122

fields 140-141, 188
including namespaces 164

Index

296

including script files 180
inheritance 121, 123
instances 121, 124, 137
introduction 121
members 140
methods 140, 145
naming 121
properties 140, 149, 190
script 122
using statement 183
clear ws 253
colon character 67
comments 63, 65
complex numbers 4, 35
circular functions 36

floating-point representation 40

component files 61, 214
access matrix 215
buffering 228
file design 225
internal structure 225
multi-user access 222
user number 215

ComponentFile Class example 156

composition operator
form II 27
form III 27

conditional statements
if (condition) 77
until 81
while 80
constructors
base 133
introduction 125
monadic 136
niladic 129, 135
overloading 126

continue branch statements 94

control qualifiers
case 85

control structures 75
disposable 95
for 82
hold 87
if (condition) 77
repeat 81
select 85
trap 91

while 80

with 86
control words 82
copy incomplete 254
COPY system command 281
curly brackets 18

D

DEADLOCK 254
decimal comparison tolerance 40
decimal numbers 4
decimal point 4
default constructor 129, 131
default property 155
defined functions 63
defined operations 63
defined operators 63
defining function 18
defining operators 20
definition mode 97
defn error 254
del editor 97
delta-underbar character 2
delta character 2
densely packed decimal 41
depth of arrays 3
derived functions 19, 22, 63
destructor 131, 137
dfns 104
default left arguments 106
error guards 110
guards 108
lexical name scope 109
local assignment of 105
multi-line 105
recursion 114
result of 105
tail calls 114, 118
diamond symbol 65
display user command 11
displaying arrays 8
boxing user command 12
display user command 11
displaying assigned functions 18
disposable statement 95
distributed functions 55

Index 297

DOMAIN ERROR 255

dops 104, 113-114

dyadic functions 17

dyadic operations 64

dyadic operators 19

DYALOG NOPUPS parameter 279
dynamic localisation 45

dynamic name scope 109

E

editing directives 99
else-if condition 75
else qualifier 75
empty vectors 5
enclosed arrays 5
enclosed elements 5
end-for control 76
end-hold control 76
end-if control 76
end-repeat control 76
end-select control 76
end-trap control 76
end-while control 76
end-with control 76
end control 76
endproperty statement 190
endsection statement 94
EOF INTERRUPT 255
error guards 110
error messages 247
error trapping control structures 91
ErrorOnExternalException parameter 285
Euler identity 34
evaluation of namespace references 45
exception 255
expressions 65

array expressions 16

function expressions 16
external functions 61
external variables 60

F

fchk system function 229
FIELD ... ERROR 256
field statement 188

fields 140-141, 188
initialising 142
private 143
public 141
shared 143
trigger 144
file access control 215
FILE ACCESS ERROR 258
FILE ACCESS ERROR ... 258
FILE COMPONENT DAMAGED 258
FILE DAMAGED 259
FILE FULL 259
FILE INDEX ERROR 259
FILE NAME ERROR 259
FILE NAME QUOTA USED UP 260
FILE SYSTEM ERROR 260
FILE SYSTEM NO SPACE 260
FILE SYSTEM NOT AVAILABLE 260
FILE SYSTEM TIES USED UP 261
FILE TIE ERROR 261
FILE TIE QUOTA USED UP 262
FILE TIED 261
FILE TIED REMOTELY 262
fill item 14
fix script 122
floating-point representation 38, 40, 42
complex numbers 40
for statements 82
fork 23
FORMAT ERROR 262
FORMAT FILE ACCESS ERROR 257
FORMAT FILE ERROR 257
FULL-SCREEN ERROR 256
function assignment 18
function body 18
function display 18
function header 18
function self-reference 114
function train 22
functions 17
ambivalent 17, 64
arguments of 17
defined 63
derived 63
dfns 104
distributed 55
dyadic 17
external 61

Index

298

left argument 17
model syntax of 64
monadic 17
niladic 17

right argument 17
scope of 17

G

global names 66

global trigger 73, 187, 211
goto branch statements 93
guards 108

H

hash tables 27
header

of function 18

of operator 20
header lines 66
high-priority callback 197
high-priority callback function 90
high minus symbol 4
HOLD ERROR 263
hold statement 90
hold statements 87
home namespace 57

I

idiom 29

idiom list 29

idiom recognition 28

idioms 29

if statements 77

implements statement
constructor 133
destructor 138
method 162
trigger 208

in control word 82

include statement 164

incorrect command 263

INDEX ERROR 264

ineach control word 82, 84

inheritance 121, 123
initialising fields 142
instances 124, 137

empty arrays of 130-131
integer numbers 4
interface statement 181-182
interfaces 162-163, 182
INTERNAL ERROR 264
INTERRUPT 265

K

KEY CODE RANK ERROR 257
KEY CODE TYPE ERROR 257

KEY CODE UNRECOGNISED 257

keyed property 158, 161
KeyPress event 257

L

labels 65-66
lamp symbol 65
leave branch statements 94
left argument of function 17
left operand of operators 19
legal names 2
LENGTH ERROR 265
lexical name scope 109
LIMIT ERROR 266
line editor 97, 99
editing directives 99
line numbers 100
line editor, traditional 18
line labels 65
line numbers 100
literals 5
local names 45, 63, 66, 68
localisation 66, 68
locals lines 68
locking defined operations 70

M

major cells 15
mantissae 4
matrices 3

Index

299

methods 140, 145
instance 146-147
private 145
public 145
shared 146

superseding in the base class 148

monadic functions 17
monadic operations 64
monadic operators 19
multi-dimensional arrays 3

N

name already exists 267
name association 197, 203
name is not a ws 267
name saved date/time 270
name scope rules 198
name separator 63
namelist 69, 126
names
function headers 64
global 66
in function headers 69
legal 2
local 45, 63, 66
Namespace 42
namespace does not exist 267
namespace reference 3, 45, 48
namespace script 175
namespace statement 175, 181
namespaces
array expansion 51
distributed assignment 53
distributed functions 55
including in classes 164
Introduction 42
operators 57
reference syntax 43
serialisation 58
unnamed 49
negative numbers 4
negative sign 4
nested arrays 5
new instance 124
niladic constructor 129, 131, 135
niladic functions 17

niladic operations 64
NO PIPES 266
NONCE ERROR 266
not copied name 267
not found name 268
not saved this ws is name 268
notation

vector 6
numbered

property 155
numbered property 154
numbers 4

complex 4

decimals 4

empty vectors 5

integers 4

mantissae 4

negative 4
numeric arrays 4

(0)

operands 19, 63
operations

model syntax 64

valence of 64
operators 19

body 20

derived functions 19

dop 113

dop self-reference 114

dops 104

dyadic 19

header 20

in namespaces 57

model syntax of 64

monadic 19

operands 19

scope of 19
oplocks 260
opportunistic locks 260
or-if condition 75
overridable 146, 148, 185
override 148, 185

P

parallel execution 34

Index

300

parent object 44
Penguin Class example 163
PROCESSOR TABLE FULL 269
properties 140, 149
default 155, 190
instance 150-151, 190
keyed 149, 158, 161, 190, 193
numbered 149, 152, 154-155, 190, 192-
193
private 190
properetyget function 152
propertyarguments class 151, 153, 158,
191
propertyget function 192-193
propertyset function 152
propertyshape function 152, 194
public 190
shared 152, 190
simple 149-152, 190, 192-193
property statement 190
propertyarguments class 151, 153, 158, 191
propertyget function 152, 192-193
propertyset function 152
propertyshape function 152
prototype 13

Q

quote character 5

R

RANK ERROR 269

rank of arrays 3

recursion 114

repeat statements 81

require statement 180
RESIZE 269

return branch statements 94
right argument of function 17
right operand of operators 19
Root object 44

S

scalar arrays 3

scalars 3
scope of functions 17
scope of operators 19
search functions 27
search path 121
section statement 94
select statements 85
self-reference

functions 114

operators 114
semi-colon separator 63
shape of arrays 3
shy result 12
shy results 64, 108
specification 6

of variables 6
standard error action 231
statement separators 65
statements 65

branch statements 93

conditional statements 77
static localisation 45
strand notation 6
structuring of arrays 7
subarrays 14
suppressed result 12
switching threads 197
synchronising threads 204
SYNTAX ERROR 271
syntax of operations 64
sys error number 272
system error codes 280
system error dialog 279, 282
system errors 272
system exceptions 280

T

tail calls 114, 118

thread switching 197

threads 195
debugging 206
external functions 203
latch example 205
paused and suspended 207
semaphore example 205
synchronise 204

Index

301

threads and external functions 203
threads and niladic functions 202
TIMEOUT 272
tokens
introduction 204
latch example 205
semaphore example 205
too many names 273
train 22
TRANSLATION ERROR 272
trap control structure 233
TRAP ERROR 272
trap statements 91
trap system variable 235
trigger fields 144
triggerarguments class 208
triggers 208
global 211
types of arrays 3

U

underbar character 2
unnamed namespaces 49
Unscripted Function 177
until conditional 81
user-defined operations 63
user number 215

using 121

using statement 183

v

valence of functions 17
valence of operations 64
valency 17
valid names 2
VALUE ERROR 273
variables
external 60
specification of 6
vector arrays 3
vector notation 6
vectors 3
empty numeric 5
visible names 66

W

warning duplicate label 273
warning duplicate name 274

warning label name present in line 0 274

warning pendent operation 274
warning unmatched brackets 275
warning unmatched parentheses 275
while statements 80

with statements 86

workspace integrity check 280
Workspaces 1

WS FULL 276

ws not found 276

ws too large 276

Z

zilde constant 5

302 Programming Reference Guide

	Chapter 1: Introduction
	Workspaces
	Legal Names
	Arrays
	Numbers
	Characters
	Enclosed Elements
	Specification of Variables
	Vector Notation
	Structuring of Arrays
	Display of Arrays
	Prototypes and Fill Items
	Cells and Sub-arrays

	Expressions
	Functions
	Operators
	Binding Strength
	Function Trains
	Search Functions and Hash Tables
	Idiom Recognition
	Idiom List

	Parallel Execution
	Complex Numbers
	128 Bit Decimal Floating-Point Support
	Introduction
	System Variable: Floating-point Representation
	Conversion between Decimal and Binary
	Decimal Comparison Tolerance
	Name Association and Floating-point Values
	Decimal Floats and Microsoft.NET

	Namespaces
	Namespace Syntax
	Namespace Reference Evaluation
	Namespaces and Localisation
	Namespace References
	Unnamed Namespaces
	Arrays of Namespace References
	Distributed Assignment
	Distributed Functions
	Namespaces and Operators
	Serialising Namespaces

	External Variables
	Component Files
	Auxiliary Processors

	Chapter 2: Defined Functions & Operators
	Traditional Functions and Operators
	Model Syntax
	Statements
	Global & Local Names
	Locals Lines
	Namelists
	Locked Functions & Operators
	Function Declaration Statements
	Access Statement
	Attribute Statement
	Implements Statement
	Signature Statement

	Control Structures
	If Statement
	While Statement
	Repeat Statement
	For Statement
	Select Statement
	With Statement
	Hold Statement
	Trap Statement
	GoTo Statement
	Return Statement
	Leave Statement
	Continue Statement
	Section Statement
	Disposable Statement

	APL Line Editor

	Dfns & Dops
	Multi-Line Dfns
	Default Left Argument
	Guards
	Shy Result
	Lexical Name Scope
	Error-Guards
	Dops
	Recursion
	Tail Calls
	Restrictions

	Chapter 3: Object Oriented Programming
	Introducing Classes
	Defining Classes
	Editing Classes
	Inheritance
	Instances

	Constructors
	Constructor Overloading
	Niladic (Default) Constructors
	Empty Arrays of Instances: Why ?
	Empty Arrays of Instances: How?
	Base Constructors
	Niladic Example
	Monadic Example

	Destructors
	Class Members
	Fields
	Public Fields
	Initialising Fields
	Private Fields
	Shared Fields
	Trigger Fields

	Methods
	Shared Methods
	Instance Methods
	Superseding Base Class Methods

	Properties
	Simple Instance Properties
	Simple Shared Properties
	Numbered Properties
	Example
	The Default Property
	ComponentFile Class
	Keyed Properties
	Example

	Interfaces
	Penguin Class Example

	Including Namespaces in Classes
	Example

	Nested Classes
	GolfService Example Class
	GolfService Example

	Namespace Scripts
	Namespace Script Example

	Including Script Files in Scripts
	Class Declaration Statements
	:Interface Statement
	:Namespace Statement
	:Class Statement
	:Using Statement
	:Attribute Statement
	:Access Statement
	:Implements Statement
	:Field Statement

	:Property Section
	PropertyArguments Class
	PropertyGet Function
	PropertySet Function
	PropertyShape Function

	Chapter 4: Threads and Triggers
	Threads
	Multi-Threading language elements.
	Thread Switching
	Name Scope
	Stack Considerations
	Globals and the Order of Execution
	Threads & Niladic Functions
	Threads & External Functions
	Synchronising Threads
	Semaphore Example
	Latch Example
	Debugging Threads

	Triggers
	Global Triggers

	Chapter 5: APL Files
	Introduction
	Component Files
	Programming Techniques
	File Design
	Internal Structure
	The Effect of Buffering
	Integrity and Security

	Chapter 6: Error Trapping
	Standard Error Action
	Error Trapping Concepts
	Example Traps
	Signalling Events
	Handling Unexpected Application Errors in Windows

	Chapter 7: Error Messages
	Introduction
	APL Errors
	Operating System Error Messages
	Windows Operating System Error Messages
	APL Error Messages
	bad ws
	cannot create name
	clear ws
	copy incomplete
	DEADLOCK
	defn error
	DOMAIN ERROR
	EOF INTERRUPT
	EXCEPTION
	FIELD CONTENTS RANK ERROR
	FIELD CONTENTS TOO MANY COLUMNS
	FIELD POSITION ERROR
	FIELD CONTENTS TYPE MISMATCH
	FIELD TYPE BEHAVIOUR UNRECOGNISED
	FIELD ATTRIBUTES RANK ERROR
	FIELD ATTRIBUTES LENGTH ERROR
	FULL SCREEN ERROR
	KEY CODE UNRECOGNISED
	KEY CODE RANK ERROR
	KEY CODE TYPE ERROR
	FORMAT FILE ACCESS ERROR
	FORMAT FILE ERROR
	FILE ACCESS ERROR
	FILE ACCESS ERROR CONVERTING
	FILE COMPONENT DAMAGED
	FILE DAMAGED
	FILE FULL
	FILE INDEX ERROR
	FILE NAME ERROR
	FILE NAME QUOTA USED UP
	FILE SYSTEM ERROR
	FILE SYSTEM NO SPACE
	FILE SYSTEM NOT AVAILABLE
	FILE SYSTEM TIES USED UP
	FILE TIE ERROR
	FILE TIED
	FILE TIED REMOTELY
	FILE TIE QUOTA USED UP
	FORMAT ERROR
	HOLD ERROR
	incorrect command
	INDEX ERROR
	INTERNAL ERROR
	INTERRUPT
	is name
	LENGTH ERROR
	LIMIT ERROR
	NONCE ERROR
	NO PIPES
	name is not a ws
	Name already exists
	Namespace does not exist
	not copied name
	not found name
	not saved this ws is name
	PROCESSOR TABLE FULL
	RANK ERROR
	RESIZE
	name saved date time
	SYNTAX ERROR
	sys error number
	TIMEOUT
	TRANSLATION ERROR
	TRAP ERROR
	too many names
	VALUE ERROR
	warning duplicate label
	warning duplicate name
	warning pendent operation
	warning label name present
	warning unmatched brackets
	warning unmatched parentheses
	was name
	WS FULL
	ws not found
	ws too large

	Operating System Error Messages
	FILE ERROR 1 Not owner
	FILE ERROR 2 No such file
	FILE ERROR 5 I O error
	FILE ERROR 6 No such device
	FILE ERROR 13 Permission denied
	FILE ERROR 20 Not a directory
	FILE ERROR 21 Is a directory
	FILE ERROR 23 File table overflow
	FILE ERROR 24 Too many open
	FILE ERROR 26 Text file busy
	FILE ERROR 27 File too large
	FILE ERROR 28 No space left
	FILE ERROR 30 Read only file

	System Errors

	Symbolic Index
	Index

